Parametric methods for probabilistic forecasting of solar irradiance

被引:31
作者
Fatemi, Seyyed A. [1 ]
Kuh, Anthony [1 ]
Fripp, Matthias [1 ]
机构
[1] Univ Hawaii Manoa, Honolulu, HI 96822 USA
关键词
Probabilistic forecast; Solar radiation; Power system; RADIATION FORECAST; ANALOG ENSEMBLE; TERM; PREDICTION; GENERATION; SERIES; FUZZY; ARMA;
D O I
10.1016/j.renene.2018.06.022
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper proposes two parametric probabilistic forecast methods using beta and two-sided power distributions to predict solar irradiance. It also evaluates their performance. To improve their performance metrics a hybrid procedure based on the beta transformed linear opinion pool is utilized. Our simulations show that these methods - despite their simple structure - can effectively forecast solar irradiance and accurately describe its stochastic characteristics. The proposed approach is flexible and could be extended to many different point forecast methods which otherwise minimize RMSE or MSE. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:666 / 676
页数:11
相关论文
共 52 条
  • [11] Beckman R. J., 1978, Journal of Statistical Computation and Simulation, V7, P253, DOI 10.1080/00949657808810232
  • [12] Noncrossing quantile regression curve estimation
    Bondell, Howard D.
    Reich, Brian J.
    Wang, Huixia
    [J]. BIOMETRIKA, 2010, 97 (04) : 825 - 838
  • [13] A Bayesian Method for Short-Term Probabilistic Forecasting of Photovoltaic Generation in Smart Grid Operation and Control
    Bracale, Antonio
    Caramia, Pierluigi
    Carpinelli, Guido
    Di Fazio, Anna Rita
    Ferruzzi, Gabriella
    [J]. ENERGIES, 2013, 6 (02) : 733 - 747
  • [14] Innovative Second-Generation Wavelets Construction With Recurrent Neural Networks for Solar Radiation Forecasting
    Capizzi, Giacomo
    Napoli, Christian
    Bonanno, Francesco
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (11) : 1805 - 1815
  • [15] Solar radiation forecast based on fuzzy logic and neural networks
    Chen, S. X.
    Gooi, H. B.
    Wang, M. Q.
    [J]. RENEWABLE ENERGY, 2013, 60 : 195 - 201
  • [16] Short-term probabilistic forecasts for Direct Normal Irradiance
    Chu, Yinghao
    Coimbra, Carlos F. M.
    [J]. RENEWABLE ENERGY, 2017, 101 : 526 - 536
  • [17] Probabilistic forecasting of the solar irradiance with recursive ARMA and GARCH models
    David, M.
    Ramahatana, F.
    Trombe, P. J.
    Lauret, P.
    [J]. SOLAR ENERGY, 2016, 133 : 55 - 72
  • [18] Fatemi S., 2014, AS PAC SIGN INF PROC, P1
  • [19] Fatemi SA, 2016, IEEE IJCNN, P4985, DOI 10.1109/IJCNN.2016.7727856
  • [20] Online and batch methods for solar radiation forecast under asymmetric cost functions
    Fatemi, Seyyed A.
    Kuh, Anthony
    Fripp, Matthias
    [J]. RENEWABLE ENERGY, 2016, 91 : 397 - 408