Parametric methods for probabilistic forecasting of solar irradiance

被引:31
作者
Fatemi, Seyyed A. [1 ]
Kuh, Anthony [1 ]
Fripp, Matthias [1 ]
机构
[1] Univ Hawaii Manoa, Honolulu, HI 96822 USA
关键词
Probabilistic forecast; Solar radiation; Power system; RADIATION FORECAST; ANALOG ENSEMBLE; TERM; PREDICTION; GENERATION; SERIES; FUZZY; ARMA;
D O I
10.1016/j.renene.2018.06.022
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper proposes two parametric probabilistic forecast methods using beta and two-sided power distributions to predict solar irradiance. It also evaluates their performance. To improve their performance metrics a hybrid procedure based on the beta transformed linear opinion pool is utilized. Our simulations show that these methods - despite their simple structure - can effectively forecast solar irradiance and accurately describe its stochastic characteristics. The proposed approach is flexible and could be extended to many different point forecast methods which otherwise minimize RMSE or MSE. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:666 / 676
页数:11
相关论文
共 52 条
  • [1] TAG - A TIME-DEPENDENT, AUTOREGRESSIVE, GAUSSIAN MODEL FOR GENERATING SYNTHETIC HOURLY RADIATION
    AGUIAR, R
    COLLARESPEREIRA, M
    [J]. SOLAR ENERGY, 1992, 49 (03) : 167 - 174
  • [2] An ANN-based approach for predicting global radiation in locations with no direct measurement instrumentation
    Al-Alawi, SM
    Al-Hinai, HA
    [J]. RENEWABLE ENERGY, 1998, 14 (1-4) : 199 - 204
  • [3] An analog ensemble for short-term probabilistic solar power forecast
    Alessandrini, S.
    Delle Monache, L.
    Sperati, S.
    Cervone, G.
    [J]. APPLIED ENERGY, 2015, 157 : 95 - 110
  • [4] A novel application of an analog ensemble for short-term wind power forecasting
    Alessandrini, S.
    Delle Monache, L.
    Sperati, S.
    Nissen, J. N.
    [J]. RENEWABLE ENERGY, 2015, 76 : 768 - 781
  • [5] PV power forecast using a nonparametric PV model
    Almeida, Marcelo Pinho
    Perpinan, Oscar
    Narvarte, Luis
    [J]. SOLAR ENERGY, 2015, 115 : 354 - 368
  • [6] Andreas A., DA550056517 NREL, DOI [10.5439/1052558, DOI 10.5439/1052558]
  • [7] Andreas A., 2012, DA550056502 NREL, DOI [10.5439/1052230, DOI 10.5439/1052230.]
  • [8] [Anonymous], 2007, PROC IEEE POWER ENG
  • [9] [Anonymous], 2005, FUNDAMENTALS ATMOSPH, DOI DOI 10.1017/CBO9781139165389
  • [10] Review of photovoltaic power forecasting
    Antonanzas, J.
    Osorio, N.
    Escobar, R.
    Urraca, R.
    Martinez-de-Pison, F. J.
    Antonanzas-Torres, F.
    [J]. SOLAR ENERGY, 2016, 136 : 78 - 111