WEAK SOLUTIONS TO THE STATIONARY INCOMPRESSIBLE EULER EQUATIONS

被引:22
作者
Choffrut, A. [1 ,2 ]
Szekelyhidi, L., Jr. [3 ]
机构
[1] Univ Edinburgh, Maxwell Inst, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] Univ Leipzig, Math Inst, D-04109 Leipzig, Germany
基金
欧洲研究理事会;
关键词
stationary Euler equations; convex integration; CONVEX INTEGRATION; FLOWS;
D O I
10.1137/140957354
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider weak stationary solutions to the incompressible Euler equations and show that the analogue of the h-principle obtained by the second author in joint work with C. De Lellis for time-dependent weak solutions in L-infinity continues to hold. The key difference arises in dimension d = 2, where it turns out that the relaxation set is strictly smaller than what one obtains in the time-dependent case.
引用
收藏
页码:4060 / 4074
页数:15
相关论文
共 23 条
[1]  
Buckmaster T., 2013, ARXIV13041049
[2]  
BUCKMASTER T., 2014, ARXIV14046915
[3]  
Buckmaster T., 2013, ARXIV13022815
[4]  
Cheskidov A., 2012, COMMUNICATION
[5]   Local Structure of The Set of Steady-State Solutions to The 2d Incompressible Euler Equations [J].
Choffrut, Antoine ;
Sverak, Vladimir .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2012, 22 (01) :136-201
[6]  
Cordoba D., 2014, CALC VAR PARTIAL DIF, V49, P729
[7]  
De Lellis C., 2012, ARXIV12053626
[8]   Dissipative continuous Euler flows [J].
De Lellis, Camillo ;
Szekelyhidi, Laszlo, Jr. .
INVENTIONES MATHEMATICAE, 2013, 193 (02) :377-407
[9]   Almost-Schur lemma [J].
De Lellis, Camillo ;
Topping, Peter M. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 43 (3-4) :347-354
[10]   The Euler equations as a differential inclusion [J].
De Lellis, Camillo ;
Szekelyhidi, Laszlo, Jr. .
ANNALS OF MATHEMATICS, 2009, 170 (03) :1417-1436