Growing a tree classifier with imprecise data

被引:18
作者
Ciampi, A
Diday, E
Lebbe, J
Périnel, E
Vignes, R
机构
[1] ENSAR, Unite Math Appl, F-35042 Rennes, France
[2] McGill Univ, Inst Cardiol Montreal, Montreal, PQ, Canada
[3] Univ Paris 09, Lise Ceremade, F-75775 Paris 16, France
[4] Univ Paris 06, F-75252 Paris 05, France
关键词
classification tree; supervised learning; symbolic data analysis; probabilistically imprecise data; soft" recursive partition;
D O I
10.1016/S0167-8655(00)00040-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Symbolic data analysis proposes a general framework to extend usual data analysis methods to more complex data called symbolic objects. The prediction problem for symbolic objects is defined: it is seen to be a generalization of the prediction for standard data. An algorithm of tree-growing is developed for probabilistically imprecise data. The new algorithm is presented as a procedure for extracting knowledge from data of a more general type than standard data. Two data sets, respectively, based on categorical and continuous variables, are treated in detail. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:787 / 803
页数:17
相关论文
共 16 条
[1]  
Bandemer H., 1992, Fuzzy data analysis
[2]  
Breiman L., 1984, BIOMETRICS, DOI DOI 10.2307/2530946
[3]   A monothetic clustering method [J].
Chavent, M .
PATTERN RECOGNITION LETTERS, 1998, 19 (11) :989-996
[4]  
Ciampi A, 1996, ST CLASS DAT ANAL, P201
[5]  
Ciampi A, 1992, P PRAG 1991 SUMM SCH, P105
[6]  
CIAMPI A, 1994, NEW APPROACHES CLASS, P277
[7]  
DIDAY E, 1995, DIMACS SERIES DISCRE, V19
[8]   Fuzzy clustering for symbolic data [J].
El-Sonbaty, Y ;
Ismail, MA .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1998, 6 (02) :195-204
[9]   SYMBOLIC CLUSTERING USING A NEW SIMILARITY MEASURE [J].
GOWDA, KC ;
DIDAY, E .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1992, 22 (02) :368-378
[10]  
HAND DJ, 1999, CONSTRUCTION ASSESSM