Effect of laser energy density on microstructural evolution and wear resistance of modified aluminum bronze coatings fabricated by laser cladding

被引:38
|
作者
Yin, T. Y. [1 ]
Zhang, S. [1 ]
Wang, Z. Y. [2 ]
Zhang, C. H. [1 ]
Liu, Y. [3 ]
Chen, J. [3 ]
机构
[1] Shenyang Univ Technol, Sch Mat Sci & Engn, Shenyang 110870, Liaoning, Peoples R China
[2] Wuzhou Univ, Wuzhou 543003, Guangxi, Peoples R China
[3] Shenyang Dalu Laser Technol CO LTD, Shenyang 110136, Liaoning, Peoples R China
关键词
Aluminum bronze coatings; Laser cladding; Laser energy density; Microstructural evolution; Wear resistance; CORROSION BEHAVIOR; STAINLESS-STEEL; HEAT-TREATMENT; FRICTION; ALLOY; PHASE; PREDICTION; PARAMETERS; CARBON;
D O I
10.1016/j.matchemphys.2022.126191
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Modified aluminum bronze coating was successfully prepared using laser cladding. This research aimed to clarify the relationship between laser energy density and macrostructure, microstructure, microhardness and wear resistance of modified aluminum bronze coating. According to the experimental results it could be concluded that the reduction of laser energy density effectively improved the formability of the cladding layer surface, but low energy density could not fully melt powder. At the optimum laser energy density of 42.4 J/mm(2), the cladding layer had the best combination of good flatness and density. There was no change in the composition phase categoryof samples prepared with varied laser energy densities, but the content of each phase varied. The aluminum bronze coating was mainly composed of alpha phase, kappa phase, beta' phase. The content of alpha phase and lc phase reduced due to the decrease of laser energy density, and Widmanstatten side plate structure appeared in the case of low energy density. As the laser energy density decreased, the crystal grain size first decreased and then increased. An orthogonal scanning strategy leading to a random orientation of the aluminum bronze coating prepared by laser cladding shown as the EBSD pattern. The Schmidt factor and KAM increased with laser energy density decreased. Laser energy density played an important role in controlling the microhardness and wear resistance of coatings. Under the optimized process parameters, the maximum microhardness could reach 341.72 HV, and the minimum wear was only 4.37 x 10(-2) mm(3)/N m.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Microstructure and wear resistance of NiTiNb ternary alloy coatings fabricated in situ by laser cladding
    Nie, Minghao
    Jiang, Pengfei
    Li, Xingran
    Zhu, Dandan
    Yue, Tailin
    Zhang, Zhihui
    SURFACE & COATINGS TECHNOLOGY, 2024, 487
  • [22] Effect of Laser Energy Density on the Properties of CoCrFeMnNi High-Entropy Alloy Coatings on Steel by Laser Cladding
    Ding, Chenchen
    Zhang, Qi
    Sun, Siyu
    Ni, Hongjun
    Liu, Yu
    Wang, Xiao
    Wan, Xiaofeng
    Wang, Hui
    METALS, 2024, 14 (09)
  • [23] Improved high-temperature hardness and wear resistance of Inconel 625 coatings fabricated by laser cladding
    Feng, Kai
    Chen, Yuan
    Deng, Pingshun
    Li, Yuyan
    Zhao, Haixing
    Lu, Fenggui
    Li, Ruifeng
    Huang, Jian
    Li, Zhuguo
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2017, 243 : 82 - 91
  • [24] Wear Resistance of Aluminum Matrix Composites' Coatings Added on AA6082 Aluminum Alloy by Laser Cladding
    Riquelme, Ainhoa
    Rodrigo, Pilar
    Escalera-Rodriguez, Maria Dolores
    Rams, Joaquin
    COATINGS, 2022, 12 (01)
  • [25] Microhardness, wear resistance, and corrosion resistance of AlxCrFeCoNiCu high-entropy alloy coatings on aluminum by laser cladding
    Li, Yanzhou
    Shi, Yan
    OPTICS AND LASER TECHNOLOGY, 2021, 134 (134):
  • [26] Effect of Carbon Fiber Addition on the Microstructure and Wear Resistance of Laser Cladding Composite Coatings
    Li, Jianfeng
    Zhu, Zhencai
    Peng, Yuxing
    Shen, Gang
    COATINGS, 2019, 9 (10)
  • [27] Effect of NbC Addition on the Microstructure and Wear Resistance of Laser Cladding Nickel-Based Alloy Coatings
    Liu, Yingpeng
    Wang, Kaiming
    Fu, Hanguang
    Yang, Xiaojun
    Lin, Jian
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024, 33 (22) : 12437 - 12451
  • [28] Effect of WC on the microstructure and wear resistance of Invar-WC coatings prepared by laser fusion cladding
    Li, Yuheng
    Gao, Qiyu
    Guan, Xiaohu
    Tian, Feixiang
    Li, Binbin
    Zhan, Xiaohong
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2025, 34 : 2285 - 2297
  • [29] Modified criterions for phase prediction in the multi-component laser-clad coatings and investigations into microstructural evolution/wear resistance of FeCrCoNiAlMox laser-clad coatings
    Juan, Y. F.
    Li, J.
    Jiang, Y. Q.
    Jia, W. L.
    Lu, Z. J.
    APPLIED SURFACE SCIENCE, 2019, 465 : 700 - 714
  • [30] Microstructure and Wear Resistance of FeCrV15 Coatings by Laser Cladding
    Bi, Zhiwei
    Li, Tianqing
    METALS, 2024, 14 (10)