Numerical evolution of black holes with a hyperbolic formulation of general relativity

被引:33
|
作者
Scheel, MA
Baumgarte, TW
Cook, GB
Shapiro, SL
Teukolsky, SA
机构
[1] UNIV ILLINOIS,DEPT PHYS,URBANA,IL 61801
[2] UNIV ILLINOIS,DEPT ASTRON,URBANA,IL 61801
[3] UNIV ILLINOIS,NATL CTR SUPERCOMP APPLICAT,URBANA,IL 61801
[4] CORNELL UNIV,DEPT PHYS,ITHACA,NY 14853
[5] CORNELL UNIV,DEPT ASTRON,ITHACA,NY 14853
来源
PHYSICAL REVIEW D | 1997年 / 56卷 / 10期
关键词
D O I
10.1103/PhysRevD.56.6320
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe a numerical code that solves Einstein's equations for a Schwarzschild black hole in spherical symmmetry, using a hyperbolic formulation introduced by Choquet-Bruhat and York. This is the first time this formulation has been used to evolve a numerical spacetime containing a black here. We excise the hale from the computational grid in order to avoid the central singularity. We describe in detail a causal differencing method that should allow one to stably evolve a hyperbolic system of equations in three spatial dimensions with an arbitrary shift vector. to second-order accuracy in both space and time. We demonstrate the success of this method in the spherically symmetric case. [S0556-2821(97)06072-0].
引用
收藏
页码:6320 / 6335
页数:16
相关论文
共 50 条
  • [31] Microscopic Origin of the Entropy of Black Holes in General Relativity
    Balasubramanian, Vijay
    Lawrence, Albion
    Magan, Javier M.
    Sasieta, Martin
    PHYSICAL REVIEW X, 2024, 14 (01)
  • [32] An introduction to general relativity, black holes and gravitational waves
    Breton, Nora
    VIII WORKSHOP OF THE GRAVITATION AND MATHEMATICAL PHYSICS DIVISION OF THE MEXICAN PHYSICAL SOCIETY, 2011, 1396
  • [33] Entropy of constant curvature black holes in general relativity
    Creighton, JDE
    Mann, RB
    PHYSICAL REVIEW D, 1998, 58 (02) : 240131 - 240134
  • [34] Binary black holes, gravitational waves, and numerical relativity
    Centrella, Joan M.
    Baker, John G.
    Boggs, William D.
    Kelly, Bernard J.
    McWilliams, Sean T.
    van Meter, James R.
    SCIDAC 2007: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2007, 78
  • [35] Black holes and fundamental fields in numerical relativity: Initial data construction and evolution of bound states
    Okawa, Hirotada
    Witek, Helvi
    Cardoso, Vitor
    PHYSICAL REVIEW D, 2014, 89 (10):
  • [36] Numerical performance of the parabolized ADM formulation of general relativity
    Paschalidis, Vasileios
    Hansen, Jakob
    Khokhlov, Alexei
    PHYSICAL REVIEW D, 2008, 78 (06):
  • [37] Eikonal quasinormal modes of black holes beyond general relativity
    Glampedakis, Kostas
    Silva, Hector O.
    PHYSICAL REVIEW D, 2019, 100 (04)
  • [38] The interior of charged black holes and the problem of uniqueness in general relativity
    Dafermos, M
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (04) : 445 - 504
  • [39] Gravitational waves and black holes - An introduction to the physics of general relativity
    vanHolten, JW
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1997, 45 (06): : 439 - 516