Some topological properties of quotients modulo semisimple algebraic groups

被引:0
作者
Gurjar, R. V. [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
关键词
Semisimple algebraic group; quotient; homology group; RATIONAL-SINGULARITIES; VARIETIES; THEOREMS; CONJECTURE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We will prove a general result in Invariant Theory, viz. for a quotient C(n)//G, where G is a connected complex semisimple algebraic group, the local first homology group at any point in the quotient C(n)//G is trivial and the local second homology group is finite. Using this we will prove that the completion of the local ring of any point in C(n)//G is a unique factorization domain (UFD).
引用
收藏
页码:793 / 806
页数:14
相关论文
共 20 条
[1]   LOCAL NORMAL FORMS OF FUNCTIONS [J].
ARNOLD, VI .
INVENTIONES MATHEMATICAE, 1976, 35 :87-109
[2]   RATIONAL-SINGULARITIES AND QUOTIENTS BY REDUCTIVE GROUPS [J].
BOUTOT, JF .
INVENTIONES MATHEMATICAE, 1987, 88 (01) :65-68
[3]  
FLENNER H, 1981, J REINE ANGEW MATH, V328, P128
[4]   BERTINI THEOREMS FOR LOCAL RINGS [J].
FLENNER, H .
MATHEMATISCHE ANNALEN, 1977, 229 (02) :97-111
[5]  
Fujita T., 1982, J FS U TOKYO 1A, V29, P503
[6]  
GIESECKE B, 1964, MATH Z, V83, P177
[7]  
GORESKY M, 1988, ERGEB MATH GRENZGEB, V14
[8]   Two-dimensional quotients of Cn are isomorphic to C2/Γ [J].
Gurjar, R. V. .
TRANSFORMATION GROUPS, 2007, 12 (01) :117-125
[9]   ON A CONJECTURE OF C.T.C. WALL [J].
GURJAR, RV .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1991, 31 (04) :1121-1124
[10]   RELATIVE HOMOTOPICAL DEPTH AND A CONJECTURE OF DELIGNE [J].
HAMM, HA ;
TRANG, LD .
MATHEMATISCHE ANNALEN, 1993, 296 (01) :87-101