A flexible dependence model for spatial extremes

被引:14
作者
Bacro, Jean-Noel [1 ]
Gaetan, Carlo [2 ]
Toulemonde, Gwladys [1 ]
机构
[1] Univ Montpellier, IMAG, F-34059 Montpellier, France
[2] Univ Ca Foscari Venezia, DAIS, Venice, Italy
关键词
Spatial extremes; Asymptotic independence; Max-stable processes; LIKELIHOOD; INFERENCE; GEOSTATISTICS; MULTIVARIATE; SPACE;
D O I
10.1016/j.jspi.2015.12.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Max-stable processes play a fundamental role in modeling the spatial dependence of extremes because they appear as a natural extension of multivariate extreme value distributions. In practice, a well-known restrictive assumption when using max-stable processes comes from the fact that the observed extremal dependence is assumed to be related to a particular max-stable dependence structure. As a consequence, the latter is imposed to all events which are more extreme than those that have been observed. Such an assumption is inappropriate in the case of asymptotic independence. Following recent advances in the literature, we exploit a max-mixture model to suggest a general spatial model which ensures extremal dependence at small distances, possible independence at large distances and asymptotic independence at intermediate distances. Parametric inference is carried out using a pairwise composite likelihood approach. Finally we apply our modeling framework to analyze daily precipitations over the East of Australia, using block maxima over the observation period and exceedances over a large threshold. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:36 / 52
页数:17
相关论文
共 45 条
[11]   Bayesian spatial modeling of extreme precipitation return levels [J].
Cooley, Daniel ;
Nychka, Douglas ;
Naveau, Philippe .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (479) :824-840
[12]   Max-stable processes for modeling extremes observed in space and time [J].
Davis, Richard A. ;
Klueppelberg, Claudia ;
Steinkohl, Christina .
JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2013, 42 (03) :399-414
[13]   Geostatistics of Dependent and Asymptotically Independent Extremes [J].
Davison, A. C. ;
Huser, R. ;
Thibaud, E. .
MATHEMATICAL GEOSCIENCES, 2013, 45 (05) :511-529
[14]   Statistical Modeling of Spatial Extremes [J].
Davison, A. C. ;
Padoan, S. A. ;
Ribatet, M. .
STATISTICAL SCIENCE, 2012, 27 (02) :161-186
[15]   Geostatistics of extremes [J].
Davison, A. C. ;
Gholamrezaee, M. M. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2138) :581-608
[16]  
DEHAAN L, 1984, ANN PROBAB, V12, P1194
[17]  
DEOLIVEIRA JT, 1962, ESTUDOS MATH ESTAT E, V7, P165
[18]   Estimation of Husler-Reiss distributions and Brown-Resnick processes [J].
Engelke, Sebastian ;
Malinowski, Alexander ;
Kabluchko, Zakhar ;
Schlather, Martin .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2015, 77 (01) :239-265
[19]   Improved estimation for temporally clustered extremes [J].
Fawcett, Lee ;
Walshaw, David .
ENVIRONMETRICS, 2007, 18 (02) :173-188
[20]   The generalized Pareto process; with a view towards application and simulation [J].
Ferreira, Ana ;
De Haan, Laurens .
BERNOULLI, 2014, 20 (04) :1717-1737