Extremal theory of vertex or edge ordered graphs

被引:0
作者
Tardos, Gabor [1 ]
机构
[1] Renyi Inst Math, Budapest, Hungary
来源
SURVEYS IN COMBINATORICS 2019 | 2019年 / 456卷
关键词
MATRICES; NUMBER;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We enrich the structure of finite simple graphs with a linear order on either the vertices or the edges. Extending the standard question of Turan-type extrema' graph theory we ask for the maximal number of edges in such a vertex or edge ordered graph on n vertices that does not contain a given pattern (or several patterns) as a subgraph. The forbidden subgraph itself is also a vertex or edge ordered graph, so we forbid a certain subgraph with a specified ordering, but we allow the same underlying subgraph with a different (vertex or edge) order. This allows us to study a large number of extrema' problems that are not expressible in the classical theory. In this survey we report on ongoing research. For easier access we include sketches of proofs of selected results.
引用
收藏
页码:221 / 236
页数:16
相关论文
共 30 条
[1]  
[Anonymous], 1983, European Journal of Combinatorics
[2]  
Balko M., 2015, Electron. Notes in Discrete Math., V49, P419
[3]   The Turan density of triple systems is not principal [J].
Balogh, J .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2002, 100 (01) :176-180
[4]   AN EXTREMAL PROBLEM ON SPARSE 0-1 MATRICES [J].
BIENSTOCK, D ;
GYORI, E .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1991, 4 (01) :17-27
[5]  
Bondy J. A., 1974, Journal of Combinatorial Theory, Series B, V16, P97, DOI 10.1016/0095-8956(74)90052-5
[6]  
Brass P, 2003, ALGORITHM COMBINAT, V25, P275
[7]   Ordered Ramsey numbers [J].
Conlon, David ;
Fox, Jacob ;
Lee, Choongbum ;
Sudakov, Benny .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 122 :353-383
[8]  
Erdo P., 1966, Studia Sci. Math. Hung., V1, P51
[9]   COMPACTNESS RESULTS IN EXTREMAL GRAPH-THEORY [J].
ERDOS, P ;
SIMONOVITS, M .
COMBINATORICA, 1982, 2 (03) :275-288
[10]   ON THE STRUCTURE OF LINEAR GRAPHS [J].
ERDOS, P ;
STONE, AH .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (12) :1087-1091