Proximal-type algorithms for split minimization problem in P-uniformly convex metric spaces

被引:48
作者
Izuchukwu, C. [1 ]
Ugwunnadi, G. C. [2 ]
Mewomo, O. T. [1 ]
Khan, A. R. [3 ]
Abbas, M. [4 ,5 ]
机构
[1] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
[2] Univ Eswatini, Dept Math, Kwaluseni, Eswatini
[3] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran, Saudi Arabia
[4] Govt Coll Univ, Dept Math, Lahore, Pakistan
[5] Univ Pretoria, Dept Math & Appl Math, Pretoria, South Africa
关键词
Split minimization problem; Proximal point algorithm; p-uniformly convex spaces; Resolvent; Convex functions; FIXED-POINT PROBLEMS; MONOTONE-OPERATORS; INCLUSION PROBLEM; ITERATIVE METHOD; CONVERGENCE; INEQUALITIES; PROJECTION;
D O I
10.1007/s11075-018-0633-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study strong convergence of some proximal-type algorithms to a solution of split minimization problem in complete p-uniformly convex metric spaces. We also analyse asymptotic behaviour of the sequence generated by Halpern-type proximal point algorithm and extend it to approximate a common solution of a finite family of minimization problems in the setting of complete p-uniformly convex metric spaces. Furthermore, numerical experiments of our algorithms in comparison with other algorithms are given to show the applicability of our results.
引用
收藏
页码:909 / 935
页数:27
相关论文
共 46 条
[1]  
Attouch H, 2008, J CONVEX ANAL, V15, P485
[2]   A new class of alternating proximal minimization algorithms with costs-to-move [J].
Attouch, H. ;
Redont, P. ;
Soubeyran, A. .
SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (03) :1061-1081
[3]   Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality [J].
Attouch, Hedy ;
Bolte, Jerome ;
Redont, Patrick ;
Soubeyran, Antoine .
MATHEMATICS OF OPERATIONS RESEARCH, 2010, 35 (02) :438-457
[4]   COMPUTING MEDIANS AND MEANS IN HADAMARD SPACES [J].
Bacak, Miroslav .
SIAM JOURNAL ON OPTIMIZATION, 2014, 24 (03) :1542-1566
[5]   The proximal point algorithm in metric spaces [J].
Bacak, Miroslav .
ISRAEL JOURNAL OF MATHEMATICS, 2013, 194 (02) :689-701
[6]   Backward-backward splitting in Hadamard spaces [J].
Banert, Sebastian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 414 (02) :656-665
[7]   A new proximal point iteration that converges weakly but not in norm [J].
Bauschke, HH ;
Burke, JV ;
Deutsch, FR ;
Hundal, HS ;
Vanderwerff, JD .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) :1829-1835
[8]   Projection and proximal point methods:: convergence results and counterexamples [J].
Bauschke, HH ;
Matousková, E ;
Reich, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (05) :715-738
[9]   Quasilinearization and curvature of Aleksandrov spaces [J].
Berg, I. D. ;
Nikolaev, I. G. .
GEOMETRIAE DEDICATA, 2008, 133 (01) :195-218
[10]   Alternating proximal algorithms with asymptotically vanishing coupling. Application to domain decomposition for PDE's [J].
Cabot, A. ;
Frankel, P. .
OPTIMIZATION, 2012, 61 (03) :307-325