The quasi-geostrophic equation in the Triebel-Lizorkin spaces

被引:51
作者
Chae, D [1 ]
机构
[1] Seoul Natl Univ, Dept Math, Seoul 151742, South Korea
关键词
EULER EQUATIONS; FLOW; BEHAVIOR; BESOV;
D O I
10.1088/0951-7715/16/2/307
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the local-in-time well-posedness in the Triebel-Lizorkin spaces for the two-dimensional quasi-geostrophic equation. We also obtain a sharp finite time blow-up criterion of solutions both in the super-critical and the critical cases, which improve the previous one by Constantin et al (1994 Nonlinearrily 7 1495-533). In the proof of the results, we use Littlewood-Paley decomposition and the paradifferential calculus applied directly to the equation.
引用
收藏
页码:479 / 495
页数:17
相关论文
共 25 条
[11]   Behavior of solutions of 2D quasi-geostrophic equations [J].
Constantin, P ;
Wu, JH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (05) :937-948
[13]   Scalars convected by a two-dimensional incompressible flow [J].
Cordoba, D ;
Fefferman, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (02) :255-260
[14]  
Frazier M., 1988, Rev. Mat. Iberoamericana, V4, P41
[15]  
FRAZIER M, 1991, AMS CBMS REG C SER M, V79
[16]   SOME OBSERVATIONS ON BESOV AND LIZORKIN-TRIEBEL SPACES [J].
JAWERTH, B .
MATHEMATICA SCANDINAVICA, 1977, 40 (01) :94-104
[17]   COMMUTATOR ESTIMATES AND THE EULER AND NAVIER-STOKES EQUATIONS [J].
KATO, T ;
PONCE, G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :891-907
[18]   The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations [J].
Kozono, H ;
Ogawa, T ;
Taniuchi, Y .
MATHEMATISCHE ZEITSCHRIFT, 2002, 242 (02) :251-278
[19]  
OGAWA T, 2002, SHARP SOBOLEV INEQUA
[20]   Inviscid and inviscid-limit behavior of a surface quasigeostrophic flow [J].
Ohkitani, K ;
Yamada, M .
PHYSICS OF FLUIDS, 1997, 9 (04) :876-882