The quasi-geostrophic equation in the Triebel-Lizorkin spaces

被引:51
作者
Chae, D [1 ]
机构
[1] Seoul Natl Univ, Dept Math, Seoul 151742, South Korea
关键词
EULER EQUATIONS; FLOW; BEHAVIOR; BESOV;
D O I
10.1088/0951-7715/16/2/307
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the local-in-time well-posedness in the Triebel-Lizorkin spaces for the two-dimensional quasi-geostrophic equation. We also obtain a sharp finite time blow-up criterion of solutions both in the super-critical and the critical cases, which improve the previous one by Constantin et al (1994 Nonlinearrily 7 1495-533). In the proof of the results, we use Littlewood-Paley decomposition and the paradifferential calculus applied directly to the equation.
引用
收藏
页码:479 / 495
页数:17
相关论文
共 25 条
[1]  
[Anonymous], VORTICITY INCOMPRESS
[2]   TRANSPORT-EQUATIONS RELATIVE TO NON-LIPSCHITZ VECTOR-FIELDS AND FLUID-MECHANICS [J].
BAHOURI, H ;
CHEMIN, JY .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 127 (02) :159-181
[3]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[4]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[5]   On the well-posedness of the Euler equations in the Triebel-Lizorkin spaces [J].
Chae, D .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (05) :654-678
[6]  
CHAE D, 2001, 0111 RIM GARC
[7]  
CHAE D, 2001, 017 RIM GARC
[8]  
Chemin J.-Y., 1998, PERFECT INCOMPRESSIB
[9]   Nonsingular surface quasi-geostrophic flow [J].
Constantin, P ;
Nie, Q ;
Schorghofer, N .
PHYSICS LETTERS A, 1998, 241 (03) :168-172
[10]   FORMATION OF STRONG FRONTS IN THE 2-D QUASI-GEOSTROPHIC THERMAL ACTIVE SCALAR [J].
CONSTANTIN, P ;
MAJDA, AJ ;
TABAK, E .
NONLINEARITY, 1994, 7 (06) :1495-1533