Learning Stochastic Optimal Policies via Gradient Descent

被引:3
|
作者
Massaroli, Stefano [1 ]
Poli, Michael [2 ]
Peluchetti, Stefano [3 ]
Park, Jinkyoo [2 ]
Yamashita, Atsushi [1 ]
Asama, Hajime [1 ]
机构
[1] Univ Tokyo, Dept Precis Engn, Tokyo 1138656, Japan
[2] Korea Adv Inst Sci & Technol, Dept Ind & Syst, Daejeon 305335, South Korea
[3] Cogent Labs, Daejeon 305701, South Korea
来源
IEEE CONTROL SYSTEMS LETTERS | 2022年 / 6卷
基金
新加坡国家研究基金会;
关键词
Optimal control; Indium tin oxide; Stochastic processes; Process control; Optimization; Neural networks; Noise measurement; stochastic processes; machine learning; PORTFOLIO SELECTION; CONVERGENCE; ITO;
D O I
10.1109/LCSYS.2021.3086672
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We systematically develop a learning-based treatment of stochastic optimal control (SOC), relying on direct optimization of parametric control policies. We propose a derivation of adjoint sensitivity results for stochastic differential equations through direct application of variational calculus. Then, given an objective function for a predetermined task specifying the desiderata for the controller, we optimize their parameters via iterative gradient descent methods. In doing so, we extend the range of applicability of classical SOC techniques, often requiring strict assumptions on the functional form of system and control. We verify the performance of the proposed approach on a continuous-time, finite horizon portfolio optimization with proportional transaction costs.
引用
收藏
页码:1094 / 1099
页数:6
相关论文
共 50 条
  • [1] Stochastic Gradient Descent for Nonconvex Learning Without Bounded Gradient Assumptions
    Lei, Yunwen
    Hu, Ting
    Li, Guiying
    Tang, Ke
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (10) : 4394 - 4400
  • [2] Regularization in Network Optimization via Trimmed Stochastic Gradient Descent With Noisy Label
    Nakamura, Kensuke
    Sohn, Bong-Soo
    Won, Kyoung-Jae
    Hong, Byung-Woo
    IEEE ACCESS, 2022, 10 : 34706 - 34715
  • [3] Weighted Aggregating Stochastic Gradient Descent for Parallel Deep Learning
    Guo, Pengzhan
    Ye, Zeyang
    Xiao, Keli
    Zhu, Wei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (10) : 5037 - 5050
  • [4] On the Convergence of Decentralized Stochastic Gradient Descent With Biased Gradients
    Jiang, Yiming
    Kang, Helei
    Liu, Jinlan
    Xu, Dongpo
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2025, 73 : 549 - 558
  • [5] Accelerating Minibatch Stochastic Gradient Descent Using Typicality Sampling
    Peng, Xinyu
    Li, Li
    Wang, Fei-Yue
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (11) : 4649 - 4659
  • [6] Parallel Fractional Stochastic Gradient Descent With Adaptive Learning for Recommender Systems
    Elahi, Fatemeh
    Fazlali, Mahmood
    Malazi, Hadi Tabatabaee
    Elahi, Mehdi
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2024, 35 (03) : 470 - 483
  • [7] Communication-Censored Distributed Stochastic Gradient Descent
    Li, Weiyu
    Wu, Zhaoxian
    Chen, Tianyi
    Li, Liping
    Ling, Qing
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (11) : 6831 - 6843
  • [8] Federated Variance-Reduced Stochastic Gradient Descent With Robustness to Byzantine Attacks
    Wu, Zhaoxian
    Ling, Qing
    Chen, Tianyi
    Giannakis, Georgios B.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 (68) : 4583 - 4596
  • [9] Optimal stochastic gradient descent algorithm for filtering
    Turali, M. Yigit
    Koc, Ali T.
    Kozat, Suleyman S.
    DIGITAL SIGNAL PROCESSING, 2024, 155
  • [10] An Efficient Preconditioner for Stochastic Gradient Descent Optimization of Image Registration
    Qiao, Yuchuan
    Lelieveldt, Boudewijn P. F.
    Staring, Marius
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (10) : 2314 - 2325