共 50 条
Learning Stochastic Optimal Policies via Gradient Descent
被引:3
|作者:
Massaroli, Stefano
[1
]
Poli, Michael
[2
]
Peluchetti, Stefano
[3
]
Park, Jinkyoo
[2
]
Yamashita, Atsushi
[1
]
Asama, Hajime
[1
]
机构:
[1] Univ Tokyo, Dept Precis Engn, Tokyo 1138656, Japan
[2] Korea Adv Inst Sci & Technol, Dept Ind & Syst, Daejeon 305335, South Korea
[3] Cogent Labs, Daejeon 305701, South Korea
来源:
IEEE CONTROL SYSTEMS LETTERS
|
2022年
/
6卷
基金:
新加坡国家研究基金会;
关键词:
Optimal control;
Indium tin oxide;
Stochastic processes;
Process control;
Optimization;
Neural networks;
Noise measurement;
stochastic processes;
machine learning;
PORTFOLIO SELECTION;
CONVERGENCE;
ITO;
D O I:
10.1109/LCSYS.2021.3086672
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
We systematically develop a learning-based treatment of stochastic optimal control (SOC), relying on direct optimization of parametric control policies. We propose a derivation of adjoint sensitivity results for stochastic differential equations through direct application of variational calculus. Then, given an objective function for a predetermined task specifying the desiderata for the controller, we optimize their parameters via iterative gradient descent methods. In doing so, we extend the range of applicability of classical SOC techniques, often requiring strict assumptions on the functional form of system and control. We verify the performance of the proposed approach on a continuous-time, finite horizon portfolio optimization with proportional transaction costs.
引用
收藏
页码:1094 / 1099
页数:6
相关论文