On the stability of Euler-Lagrange type cubic mappings in quasi-Banach spaces

被引:41
作者
Jun, Kil-Woung [1 ]
Kim, Hark-Mahn [1 ]
机构
[1] Chungnam Natl Univ, Dept Math, Taejon 305764, South Korea
关键词
Hyers-Ulam-Rassias stability; functional inequality; cubic mapping; quasi-Banach spaces; p-Banach spaces;
D O I
10.1016/j.jmaa.2006.11.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we solve the generalized Hyers-Ulam-Rassias stability problem for Euler-Lagrange type cubic functional equations f(ax + y) + f (x + ay) = (a + 1)(a - 1)(2)[f(x) + f(y)] + a(a + 1)f (x + y) for mappings f : X -> Y in quasi-Banach spaces and for fixed integers a with a not equal 0, +/- 1. In addition, we also present a counterexample that does not satisfy the stability based on Ulam's question. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1335 / 1350
页数:16
相关论文
共 24 条
[1]  
Aczel J., 1989, FUNCTIONAL EQUATIONS
[2]  
[Anonymous], 1964, PROBLEMS MODERN MATH
[3]  
[Anonymous], 1992, CHINESE J MATH
[4]  
BAE J, 2002, B KOREAN MATH SOC, V39, P401
[5]  
BENYAMINI Y, 2000, C PUBL, V48
[6]   ON THE STABILITY OF THE QUADRATIC MAPPING IN NORMED SPACES [J].
CZERWIK, S .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1992, 62 :59-64
[7]  
Czerwik S., 1994, Stability of Mappings of Hyers-Ulam Type, P81
[8]  
Gajda Z, 1991, INT J MATH MATH SCI, V14, P431, DOI [DOI 10.1155/S016117129100056X, 10.1155/S016117129100056X]
[9]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[10]  
Hyers D.H., 1998, Stability of Functional Equations in Several Variables