Strong type estimates for homogeneous Besov capacities

被引:47
作者
Adams, DR [1 ]
Xiao, J
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
[2] Mem Univ Newfoundland, Dept Math & Stat, St Johns, NF A1C 5S7, Canada
关键词
D O I
10.1007/s00208-002-0396-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Capacitary strong type estimates for homogeneous Besov spaces are established. Moreover, the result is used to study embeddings and dualities of function spaces.
引用
收藏
页码:695 / 709
页数:15
相关论文
共 17 条
[1]  
Adams D. R., 1981, LECT LP POTENTIAL TH, V2
[2]  
Adams D. R., 1998, Publ. Mat., V42, P3
[3]   TRANSLATION-DILATION INVARIANT ESTIMATES FOR RIESZ POTENTIALS [J].
ADAMS, DR ;
BAGBY, RJ .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 23 (11) :1051-1067
[4]  
ADAMS DR, 1988, LECT NOTES MATH, V1302, P115
[5]  
ADAMS DR, 1989, PWN POLISH SCI PUBL, V22, P9
[6]   CONVOLUTION OPERATORS ON BANACH SPACE VALUED FUNCTIONS [J].
BENEDEK, A ;
PANZONE, R ;
CALDERON, AP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1962, 48 (03) :356-&
[7]   SOME NEW FUNCTION-SPACES AND THEIR APPLICATIONS TO HARMONIC-ANALYSIS [J].
COIFMAN, RR ;
MEYER, Y ;
STEIN, EM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 62 (02) :304-335
[8]   REGULARITY PROPERTIES OF RIESZ POTENTIALS [J].
DAHLBERG, BEJ .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1979, 28 (02) :257-268
[9]   SOME MAXIMAL INEQUALITIES [J].
FEFFERMAN, C ;
STEIN, EM .
AMERICAN JOURNAL OF MATHEMATICS, 1971, 93 (01) :107-+
[10]  
HERZ CS, 1968, J MATH MECH, V18, P283