High mobility group box I;
Epithelial-mesenchymal transition;
Pulmonary fibrosis;
Protocatechuic aldehyde;
Receptor for advanced glycation end-product;
Fibroblast growth factor 2;
GLYCATION END-PRODUCTS;
RECEPTOR;
INHIBITION;
EXPRESSION;
PROTEIN;
CELLS;
RAGE;
D O I:
10.1016/j.taap.2015.01.001
中图分类号:
R9 [药学];
学科分类号:
1007 ;
摘要:
An abnormal high mobility group box 1 (HMGB1) activation and a decrease in receptor for advanced glycation end-product (RAGE) play a key role in the pathogenesis of pulmonary fibrosis. Protocatechuic aldehyde (PA) is a naturally occurring compound, which is extracted from the degradation of phenolic acids. However, whether PA has anti-fibrotic functions is unknown. In this study, the effects of PA on the transforming growth factor-beta 1 (TGF-beta 1)-mediated epithelial-mesenchymal transition (EMT) in A549 cells, on the apoptosis of human type I alveolar epithelial cells (AT I), on the proliferation of human lung fibroblasts (HLF-1) in vitro, and on bleomycin (BLM)-induced pulmonary fibrosis in vivo were investigated. PA treatment resulted in a reduction of EMT in A549 cells with a decrease in vimentin and HMGB, an increase of E-cadherin and RAGE, a reduction of HLF-1 proliferation with a decrease of fibroblast growth factor 2 (FGF-2) and platelet-derived growth factor (PDGF). Apoptosis of AT I was attenuated with an increase of RAGE. PA ameliorated BLM-induced pulmonary fibrosis in rats with a reduction of histopathological scores and collagen deposition, and a lower FGF-2, PDGF, alpha-smooth muscle actin (alpha-SMA) and HMGB1 expression, whereas higher RAGE was found in ELM-instilled lungs. Through the decrease of HGMB1 and the regulation of RAGE, PA reversed the EMT, inhibited HLF-1 proliferation as well as reduced apoptosis in AT I, and prevented pulmonary fibrosis in vivo. Collectively, our results demonstrate that PA prevents experimental pulmonary fibrosis by modulating HMGB1/RAGE pathway. (C) 2015 Elsevier Inc. All rights reserved.