Reconstruction of the local volatility function using the Black-Scholes model

被引:8
作者
Kim, Sangkwon [1 ]
Han, Hyunsoo [2 ]
Jang, Hanbyeol [2 ]
Jeong, Darae [3 ]
Lee, Chaeyoung [1 ]
Lee, Wonjin [2 ]
Kim, Junseok [1 ]
机构
[1] Korea Univ, Dept Math, Seoul 02841, South Korea
[2] Korea Univ, Dept Financial Engn, Seoul 02841, South Korea
[3] Kangwon Natl Univ, Dept Math, Chuncheon Si 24341, Gangwon Do, South Korea
基金
新加坡国家研究基金会;
关键词
Black?Scholes equation; Finite difference method; Local volatility; Monte Carlo simulation; CALIBRATION; OPTIONS;
D O I
10.1016/j.jocs.2021.101341
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose a robust and accurate numerical algorithm to reconstruct a local volatility function using the Black?Scholes (BS) partial differential equation (PDE). Using the BS PDE and given market data, option prices at strike prices and expiry times, a time-dependent local volatility function is computed. The proposed algorithm consists of the following steps: (1) The time-dependent volatility function is computed using a recently developed method; (2) A Monte Carlo simulation technique is used to find the effective region which has a strong influence on option prices; and we partition the effective domain into several sub-regions and define a local volatility function based on the time-dependent volatility function on the sub-regions; and (3) Finally, we calibrate the local volatility function using the fully implicit finite difference method and the conjugate gradient optimization algorithm. We demonstrate the robustness and accuracy of the proposed local volatility reconstruction algorithm using manufactured volatility surface and real market data.
引用
收藏
页数:10
相关论文
共 21 条
[1]  
Albani V, 2017, INT J THEOR APPL FIN, V20, DOI 10.1142/S0219024917500066
[2]  
Andersen L. B. G., 1998, The Journal of Computational Finance, V1, P5
[3]   Modeling and implementation of local volatility surfaces in Bayesian framework [J].
Animoku A. ;
Uğur Ö. ;
Yolcu-Okur Y. .
Computational Management Science, 2018, 15 (2) :239-258
[4]   PRICING OF OPTIONS AND CORPORATE LIABILITIES [J].
BLACK, F ;
SCHOLES, M .
JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) :637-654
[5]  
Burden R. L., 2016, NUMERICAL ANAL
[6]   Estimation of local volatilities in a generalized Black-Scholes model [J].
Cho, CK ;
Kim, T ;
Kwon, Y .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 162 (03) :1135-1149
[7]   Stable local volatility function calibration using spline kernel [J].
Coleman, Thomas F. ;
Li, Yuying ;
Wang, Cheng .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2013, 55 (03) :675-702
[8]  
Crepey S., 2013, SIAM J NUMER ANAL, V34, P1183
[9]  
Derman E., 1994, RISK, V7, P32
[10]  
Dupire B., 1994, RISK, V7, P18