Free-Piston Stirling Engines (FPSEs) are known for their easy maintenance, longer lifetimes, high reliability, quiet operation due to no crankshafts, and having fewer seals compared to the traditional Stirling engine. Free-piston systems are popular in the conversion of thermal energy into electrical energy and are compatible with many types of heat sources. This research paper concentrates on the development of a Permanent Magnet Linear Alternator (PMLA) and parametrically analyzing it to predict its limitations and performance over variable operable conditions and material choices. Operable conditions including stroke length and frequency of the translator, and material choice for the stator and magnets, are varied in this study to analyze the machine and put it to test for its extreme limitations. Spacing between slots is introduced to reduce the overall mass of the stator and increase the power density. The load test is carried out with varied parameters. It induces a load EMF of 2.4 kV, yields a power of 7 kW, and has a power density of 314 W/kg by FEM analysis in peak variations. This study enumerates the performance variation of a PMLA over these varied conditions and illustrates the limitations of such power-dense machines.