RNA-guided transcriptional activation via CRISPR/dCas9 mimics overexpression phenotypes in Arabidopsis

被引:56
作者
Park, Jong-Jin [1 ,2 ]
Dempewolf, Emma [1 ]
Zhang, Wenzheng [1 ]
Wang, Zeng-Yu [1 ,2 ]
机构
[1] Samuel Roberts Noble Fdn Inc, Forage Improvement Div, Ardmore, OK 73401 USA
[2] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37830 USA
来源
PLOS ONE | 2017年 / 12卷 / 06期
关键词
GENOME; SYSTEM; COMPLEX; ENDONUCLEASE; IMMUNITY; LEAF;
D O I
10.1371/journal.pone.0179410
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR associated protein 9 (Cas9) system allows effective gene modification through RNA-guided DNA targeting. The Cas9 has undergone a series of functional alterations from the original active endonuclease to partially or completely deactivated Cas9. The catalytically deactivated Cas9 (dCas9) offers a platform to regulate transcriptional expression with the addition of activator or repressor domains. We redesigned a CRISPR/Cas9 activation system by adding the p65 transactivating subunit of NF-kappa B and a heat-shock factor 1 (HSF) activation domain to dCas9 bound with the VP64 (tetramer of VP16) activation domain for application in plants. The redesigned CRISPR/Cas9 activation system was tested in Arabidopsis to increase endogenous transcriptional levels of production of anthocyanin pigment 1 (PAP1) and Arabidopsis thaliana vacuolar H+-pyrophosphatase (AVP1). The expression of PAP1 was increased two- to three-fold and the activated plants exhibited purple leaves similar to that of PAP1 overexpressors. The AVP1 gene expression was increased two- to five-fold in transgenic plants. In comparison to the wild type, AVP1 activated plants had increased leaf numbers, larger single-leaf areas and improved tolerance to drought stress. The AVP1 activated plants showed similar phenotypes to AVP1 overexpressors. Therefore, the redesigned CRISPR/Cas9 activation system containing modified p65-HSF provides a simple approach for producing activated plants by upregulating endogenous transcriptional levels.
引用
收藏
页数:13
相关论文
共 23 条
[1]   A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts [J].
Bart, Rebecca ;
Chern, Mawsheng ;
Park, Chang-Jin ;
Bartley, Laura ;
Ronald, Pamela C. .
PLANT METHODS, 2006, 2 (1)
[2]   Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system [J].
Belhaj, Khaoula ;
Chaparro-Garcia, Angela ;
Kamoun, Sophien ;
Nekrasov, Vladimir .
PLANT METHODS, 2013, 9
[3]   Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis [J].
Borevitz, JO ;
Xia, YJ ;
Blount, J ;
Dixon, RA ;
Lamb, C .
PLANT CELL, 2000, 12 (12) :2383-2393
[4]   The CRISPR/Cas9 system for plant genome editing and beyond [J].
Bortesi, Luisa ;
Fischer, Rainer .
BIOTECHNOLOGY ADVANCES, 2015, 33 (01) :41-52
[5]   Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease [J].
Cho, Seung Woo ;
Kim, Sojung ;
Kim, Jong Min ;
Kim, Jin-Soo .
NATURE BIOTECHNOLOGY, 2013, 31 (03) :230-232
[6]   Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana [J].
Cominelli, Eleonora ;
Gusmaroli, Giuliana ;
Allegra, Domenico ;
Galbiati, Massimo ;
Wade, Helena K. ;
Jenkins, Gareth I. ;
Tonelli, Chiara .
JOURNAL OF PLANT PHYSIOLOGY, 2008, 165 (08) :886-894
[7]   Therapeutic genome editing: prospects and challenges [J].
Cox, David Benjamin Turitz ;
Platt, Randall Jeffrey ;
Zhang, Feng .
NATURE MEDICINE, 2015, 21 (02) :121-131
[8]  
Demirci Y., 2017, J CELL PHYSL
[9]   Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems [J].
DiCarlo, James E. ;
Norville, Julie E. ;
Mali, Prashant ;
Rios, Xavier ;
Aach, John ;
Church, George M. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (07) :4336-4343
[10]   Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria [J].
Gasiunas, Giedrius ;
Barrangou, Rodolphe ;
Horvath, Philippe ;
Siksnys, Virginijus .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (39) :E2579-E2586