Phase sensing beyond the standard quantum limit with a variation on the SU(1,1) interferometer

被引:126
作者
Anderson, Brian E. [1 ,2 ]
Gupta, Prasoon [1 ,2 ]
Schmittberger, Bonnie L. [1 ,2 ]
Horrom, Travis [1 ,2 ]
Hermann-Avigliano, Carla [1 ,2 ]
Jones, Kevin M. [3 ]
Lett, Paul D. [1 ,2 ,4 ]
机构
[1] NIST, Joint Quantum Inst, College Pk, MD 20742 USA
[2] Univ Maryland, College Pk, MD 20742 USA
[3] Williams Coll, Dept Phys, Williamstown, MA 01267 USA
[4] NIST, Quantum Measurement Div, Gaithersburg, MD 20899 USA
来源
OPTICA | 2017年 / 4卷 / 07期
基金
美国国家科学基金会;
关键词
NOISE;
D O I
10.1364/OPTICA.4.000752
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An SU(1,1) interferometer, which replaces the beam splitters in a Mach-Zehnder interferometer with nonlinear interactions, offers the potential of achieving improved phase sensitivity in applications with low optical powers. We present a novel variation on the SU(1,1) interferometer in which the second nonlinear interaction is replaced with balanced homodyne detection. We show theoretically that this "truncated SU(1,1) interferometer" can achieve the same potential phase sensitivity as the conventional SU(1,1) interferometer. We build an experimental realization of this device using seeded four-wave mixing in Rb-85 vapor as the nonlinear interaction, thus employing a bright two-mode squeezed state as the phase-sensing quantum state inside the interferometer. Measurements as a function of operating point show that even with approximate to 35% loss, this device can surpass the standard quantum limit by 4 dB. This device is simpler to build and operate than the conventional SU(1,1) interferometer, and also eliminates some sources of loss, thus making it useful for applications in precision metrology. (C) 2017 Optical Society of America
引用
收藏
页码:752 / 756
页数:5
相关论文
共 25 条
  • [1] Anderson B. E., 2017, PHYS REV IN PRESS A
  • [2] [Anonymous], 2004, A Guide to Experiments in Quantum Optics
  • [3] QUANTUM-MECHANICAL NOISE IN AN INTERFEROMETER
    CAVES, CM
    [J]. PHYSICAL REVIEW D, 1981, 23 (08): : 1693 - 1708
  • [4] Measuring protein concentration with entangled photons
    Crespi, Andrea
    Lobino, Mirko
    Matthews, Jonathan C. F.
    Politi, Alberto
    Neal, Chris R.
    Ramponi, Roberta
    Osellame, Roberto
    O'Brien, Jeremy L.
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (23)
  • [5] Optimal Quantum Phase Estimation
    Dorner, U.
    Demkowicz-Dobrzanski, R.
    Smith, B. J.
    Lundeen, J. S.
    Wasilewski, W.
    Banaszek, K.
    Walmsley, I. A.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (04)
  • [6] Giovannetti V, 2011, NAT PHOTONICS, V5, P222, DOI [10.1038/NPHOTON.2011.35, 10.1038/nphoton.2011.35]
  • [7] SQUEEZED-LIGHT ENHANCED POLARIZATION INTERFEROMETER
    GRANGIER, P
    SLUSHER, RE
    YURKE, B
    LAPORTA, A
    [J]. PHYSICAL REVIEW LETTERS, 1987, 59 (19) : 2153 - 2156
  • [8] Nonlinear atom interferometer surpasses classical precision limit
    Gross, C.
    Zibold, T.
    Nicklas, E.
    Esteve, J.
    Oberthaler, M. K.
    [J]. NATURE, 2010, 464 (7292) : 1165 - 1169
  • [9] INTERFEROMETRIC DETECTION OF OPTICAL-PHASE SHIFTS AT THE HEISENBERG LIMIT
    HOLLAND, MJ
    BURNETT, K
    [J]. PHYSICAL REVIEW LETTERS, 1993, 71 (09) : 1355 - 1358
  • [10] Quantum metrology with parametric amplifier-based photon correlation interferometers
    Hudelist, F.
    Kong, Jia
    Liu, Cunjin
    Jing, Jietai
    Ou, Z. Y.
    Zhang, Weiping
    [J]. NATURE COMMUNICATIONS, 2014, 5