Resonance energy transfer from a fluorescent dye molecule to plasmon and electron-hole excitations of a metal nanoparticle

被引:29
作者
Swathi, R. S. [1 ]
Sebastian, K. L. [1 ]
机构
[1] Indian Inst Sci, Dept Inorgan & Phys Chem, Bangalore 560012, Karnataka, India
关键词
D O I
10.1063/1.2735584
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The authors study the distance dependence of the rate of electronic excitation energy transfer from a dye molecule to a metal nanoparticle. Using the spherical jellium model, they evaluate the rates corresponding to the excitation of l=1, 2, and 3 modes of the nanoparticle. The calculation takes into account both the electron-hole pair and the plasmon excitations of the nanoparticle. The rate follows conventional R-6 dependence at large distances while small deviations from this behavior are observed at shorter distances. Within the framework of the jellium model, it is not possible to attribute the experimentally observed d(-4) dependence of the rate to energy transfer to plasmons or electron-hole pair excitations. (c) 2007 American Institute of Physics.
引用
收藏
页数:5
相关论文
共 25 条