Predicting Triple-Negative Breast Cancer Subtype Using Multiple Single Nucleotide Polymorphisms for Breast Cancer Risk and Several Variable Selection Methods

被引:15
作者
Haeberle, Lothar [1 ,2 ]
Hein, Alexander [1 ]
Ruebner, Matthias [1 ]
Schneider, Michael [1 ]
Ekici, Arif B. [3 ]
Gass, Paul [1 ]
Hartmann, Arndt [4 ,5 ]
Schulz-Wendtland, Ruediger [5 ]
Beckmann, MatthiasW. [1 ]
Lo, Wing-Yee [6 ,7 ]
Schroth, Werner [6 ,7 ]
Brauch, Hiltrud [6 ,7 ,8 ]
Fasching, Peter A. [1 ]
Wunderle, Marius [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg FAU, Comprehens Canc Ctr Erlangen EMN, Univ Breast Ctr Franconia, Dept Gynecol & Obstet,Erlangen Univ Hosp, Univ Str 21-23, D-91054 Erlangen, Germany
[2] Erlangen Univ Hosp, Biostat Unit, Dept Gynecol & Obstet, Erlangen, Germany
[3] Friedrich Alexander Univ Erlangen Nurnberg FAU, Inst Human Genet, Erlangen, Germany
[4] Friedrich Alexander Univ Erlangen Nurnberg FAU, Inst Pathol, Erlangen Univ Hosp, Erlangen, Germany
[5] Friedrich Alexander Univ Erlangen Nurnberg FAU, Inst Diagnost Radiol, Erlangen Univ Hosp, Erlangen, Germany
[6] Dr Margarete Fischer Bosch Inst Clin Pharmacol, Stuttgart, Germany
[7] Univ Tubingen, Tubingen, Germany
[8] German Canc Res Ctr, German Canc Consortium DKTK, Heidelberg, Germany
关键词
breast cancer; SNPs; triple-negative; subtype prediction; prediction model; variable selection; GENOME-WIDE ASSOCIATION; INTERNATIONAL EXPERT CONSENSUS; SUSCEPTIBILITY LOCI; PRIMARY THERAPY; MAMMOGRAPHIC DENSITY; CONFER SUSCEPTIBILITY; FUNCTIONAL VARIANTS; REGRESSION-MODELS; COMMON VARIANTS; POOLED ANALYSIS;
D O I
10.1055/s-0043-111602
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
Introduction Studies of triple-negative breast cancer have recently been extending the inclusion criteria and incorporating additional molecular markers into the selection criteria, opening up scope for targeted therapies. The screening phases required for studies of this type are often prolonged, since the process of determining the molecular subtype and carrying out additional biomarker assessment is time-consuming. Parameters such as germline genotypes capable of predicting the molecular subtype before it becomes available from pathology might be helpful for treatment planning and optimizing the timing and cost of screening phases. This appears to be feasible, as rapid and low-cost genotyping methods are becoming increasingly available. The aim of this study was to identify single nucleotide polymorphisms (SNPs) for breast cancer risk capable of predicting triple negativity, in addition to clinical predictors, in breast cancer patients. Methods This cross-sectional observational study included 1271 women with invasive breast cancer who were treated at a university hospital. A total of 76 validated breast cancer risk SNPs were successfully genotyped. Univariate associations between each SNP and triple negativity were explored using logistic regression analyses. Several variable selection and regression techniques were applied to identify a set of SNPs that together improve the prediction of triple negativity in addition to the clinical predictors of age at diagnosis and body mass index (BMI). The most accurate prediction method was determined by cross-validation. Results The SNP rs10069690 (TERT, CLPTM1L) was the only significant SNP (corrected p = 0.02) after correction of p values for multiple testing in the univariate analyses. This SNP and three additional SNPs from the genes RAD51B, CCND1, and FGFR2 were selected for prediction of triple negativity. The addition of these SNPs to clinical predictors increased the cross-validated area under the curve (AUC) from 0.618 to 0.625. Age at diagnosis was the strongest predictor, stronger than any genetic characteristics. Conclusion Prediction of triple-negative breast cancer can be improved if SNPs associated with breast cancer risk are added to a prediction rule based on age at diagnosis and BMI. This finding could be used for prescreening purposes in complex molecular therapy studies for triple-negative breast cancer.
引用
收藏
页码:667 / 678
页数:12
相关论文
共 88 条
[1]   Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2 [J].
Ahmed, Shahana ;
Thomas, Gilles ;
Ghoussaini, Maya ;
Healey, Catherine S. ;
Humphreys, Manjeet K. ;
Platte, Radka ;
Morrison, Jonathan ;
Maranian, Melanie ;
Pooley, Karen A. ;
Luben, Robert ;
Eccles, Diana ;
Evans, D. Gareth ;
Fletcher, Olivia ;
Johnson, Nichola ;
Silva, Isabel dos Santos ;
Peto, Julian ;
Stratton, Michael R. ;
Rahman, Nazneen ;
Jacobs, Kevin ;
Prentice, Ross ;
Anderson, Garnet L. ;
Rajkovic, Aleksandar ;
Curb, J. David ;
Ziegler, Regina G. ;
Berg, Christine D. ;
Buys, Saundra S. ;
McCarty, Catherine A. ;
Feigelson, Heather Spencer ;
Calle, Eugenia E. ;
Thun, Michael J. ;
Diver, W. Ryan ;
Bojesen, Stig ;
Nordestgaard, Borge G. ;
Flyger, Henrik ;
Doerk, Thilo ;
Schuermann, Peter ;
Hillemanns, Peter ;
Karstens, Johann H. ;
Bogdanova, Natalia V. ;
Antonenkova, Natalia N. ;
Zalutsky, Iosif V. ;
Bermisheva, Marina ;
Fedorova, Sardana ;
Khusnutdinova, Elza ;
Kang, Daehee ;
Yoo, Keun-Young ;
Noh, Dong Young ;
Ahn, Sei-Hyun ;
Devilee, Peter ;
van Asperen, Christi J. .
NATURE GENETICS, 2009, 41 (05) :585-590
[2]  
Althuis MD, 2004, CANCER EPIDEM BIOMAR, V13, P1558
[3]   Selection bias in gene extraction on the basis of microarray gene-expression data [J].
Ambroise, C ;
McLachlan, GJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (10) :6562-6566
[4]   A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor-negative breast cancer in the general population [J].
Antoniou, Antonis C. ;
Wang, Xianshu ;
Fredericksen, Zachary S. ;
McGuffog, Lesley ;
Tarrell, Robert ;
Sinilnikova, Olga M. ;
Healey, Sue ;
Morrison, Jonathan ;
Kartsonaki, Christiana ;
Lesnick, Timothy ;
Ghoussaini, Maya ;
Barrowdale, Daniel ;
Peock, Susan ;
Cook, Margaret ;
Oliver, Clare ;
Frost, Debra ;
Eccles, Diana ;
Evans, D. Gareth ;
Eeles, Ros ;
Izatt, Louise ;
Chu, Carol ;
Douglas, Fiona ;
Paterson, Joan ;
Stoppa-Lyonnet, Dominique ;
Houdayer, Claude ;
Mazoyer, Sylvie ;
Giraud, Sophie ;
Lasset, Christine ;
Remenieras, Audrey ;
Caron, Olivier ;
Hardouin, Agnes ;
Berthet, Pascaline ;
Hogervorst, Frans B. L. ;
Rookus, Matti A. ;
Jager, Agnes ;
van den Ouweland, Ans ;
Hoogerbrugge, Nicoline ;
van der Luijt, Rob B. ;
Meijers-Heijboer, Hanne ;
Garcia, Encarna B. Gomez ;
Devilee, Peter ;
Vreeswijk, Maaike P. G. ;
Lubinski, Jan ;
Jakubowska, Anna ;
Gronwald, Jacek ;
Huzarski, Tomasz ;
Byrski, Tomasz ;
Gorski, Bohdan ;
Cybulski, Cezary ;
Spurdle, Amanda B. .
NATURE GENETICS, 2010, 42 (10) :885-+
[5]  
AstraZeneca, 2017, OL ADJ TREATM PAT GE
[6]  
AstraZeneca, 2013, ASS EFF SAF OL MON V
[7]   Association Between a Germline OCA2 Polymorphism at Chromosome 15q13.1 and Estrogen Receptor-Negative Breast Cancer Survival [J].
Azzato, Elizabeth M. ;
Tyrer, Jonathan ;
Fasching, Peter A. ;
Beckmann, Matthias W. ;
Ekici, Arif B. ;
Schulz-Wendtland, Ruediger ;
Bojesen, Stig E. ;
Nordestgaard, Borge G. ;
Flyger, Henrik ;
Milne, Roger L. ;
Arias, Jose Ignacio ;
Menendez, Primitiva ;
Benitez, Javier ;
Chang-Claude, Jenny ;
Hein, Rebecca ;
Wang-Gohrke, Shan ;
Nevanlinna, Heli ;
Heikkinen, Tuomas ;
Aittomaki, Kristiina ;
Blomqvist, Carl ;
Margolin, Sara ;
Mannermaa, Arto ;
Kosma, Veli-Matti ;
Kataja, Vesa ;
Beesley, Jonathan ;
Chen, Xiaoqing ;
Chenevix-Trench, Georgia ;
Couch, Fergus J. ;
Olson, Janet E. ;
Fredericksen, Zachary S. ;
Wang, Xianshu ;
Giles, Graham G. ;
Severi, Gianluca ;
Baglietto, Laura ;
Southey, Melissa C. ;
Devilee, Peter ;
Tollenaar, Rob A. E. M. ;
Seynaeve, Caroline ;
Garcia-Closas, Montserrat ;
Lissowska, Jolanta ;
Sherman, Mark E. ;
Bolton, Kelly L. ;
Hall, Per ;
Czene, Kamila ;
Cox, Angela ;
Brock, Ian W. ;
Elliott, Graeme C. ;
Reed, Malcolm W. R. ;
Greenberg, David ;
Anton-Culver, Hoda .
JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2010, 102 (09) :650-662
[8]   Quality Assured Health Care in Certified Breast Centers and Improvement of the Prognosis of Breast Cancer Patients [J].
Beckmann, Matthias W. ;
Brucker, Cosima ;
Hanf, Volker ;
Rauh, Claudia ;
Bani, Mayada R. ;
Knob, Stefanie ;
Petsch, Sabrina ;
Schick, Stefan ;
Fasching, Peter A. ;
Hartmann, Arndt ;
Lux, Michael P. ;
Haeberle, Lothar .
ONKOLOGIE, 2011, 34 (07) :362-367
[9]   Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer [J].
Bojesen, Stig E. ;
Pooley, Karen A. ;
Johnatty, Sharon E. ;
Beesley, Jonathan ;
Michailidou, Kyriaki ;
Tyrer, Jonathan P. ;
Edwards, Stacey L. ;
Pickett, Hilda A. ;
Shen, Howard C. ;
Smart, Chanel E. ;
Hillman, Kristine M. ;
Mai, Phuong L. ;
Lawrenson, Kate ;
Stutz, Michael D. ;
Lu, Yi ;
Karevan, Rod ;
Woods, Nicholas ;
Johnston, Rebecca L. ;
French, Juliet D. ;
Chen, Xiaoqing ;
Weischer, Maren ;
Nielsen, Sune F. ;
Maranian, Melanie J. ;
Ghoussaini, Maya ;
Ahmed, Shahana ;
Baynes, Caroline ;
Bolla, Manjeet K. ;
Wang, Qin ;
Dennis, Joe ;
McGuffog, Lesley ;
Barrowdale, Daniel ;
Lee, Andrew ;
Healey, Sue ;
Lush, Michael ;
Tessier, Daniel C. ;
Vincent, Daniel ;
Bacot, Francis ;
Vergote, Ignace ;
Lambrechts, Sandrina ;
Despierre, Evelyn ;
Risch, Harvey A. ;
Gonzalez-Neira, Anna ;
Rossing, Mary Anne ;
Pita, Guillermo ;
Doherty, Jennifer A. ;
Alvarez, Nuria ;
Larson, Melissa C. ;
Fridley, Brooke L. ;
Schoof, Nils ;
Chang-Claude, Jenny .
NATURE GENETICS, 2013, 45 (04) :371-384
[10]   Testing the additional predictive value of high-dimensional molecular data [J].
Boulesteix, Anne-Laure ;
Hothorn, Torsten .
BMC BIOINFORMATICS, 2010, 11