The geometric triangle for 3-dimensional Seiberg-Witten monopoles

被引:2
作者
Carey, AL [1 ]
Marcolli, M
Wang, BL
机构
[1] Australian Natl Univ, Sch Math Sci, Canberra, ACT, Australia
[2] Max Planck Inst Math, D-53111 Bonn, Germany
[3] Univ Adelaide, Dept Pure Math, Adelaide, SA 5005, Australia
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
3-manifolds; Seiberg-Witten equations; moduli spaces; gluing monopoles; relative grading;
D O I
10.1142/S0219199703000975
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the surgery formula relating the moduli spaces of solutions of suitably perturbed 3-dimensional Seiberg-Witten equations on a homology 3-sphere Y and on the 3-manifolds Y-1 and Y-0 obtained, respectively, by +1 and 0-surgery on a knot K in Y.
引用
收藏
页码:197 / 250
页数:54
相关论文
共 41 条
[1]  
[Anonymous], ANN SCUOLA NORM SUP
[2]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .3. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 79 (JAN) :71-99
[3]  
BISMUT JEAN-MICHEL, 1989, J. Amer. Math. Soc., V2, P33, DOI 10.2307/1990912
[4]  
BRAAM PJ, 1995, PROGR MATH, V133
[5]  
Cappell SE, 1996, COMMUN PUR APPL MATH, V49, P825, DOI 10.1002/(SICI)1097-0312(199608)49:8<825::AID-CPA3>3.0.CO
[6]  
2-A
[7]   ON THE MASLOV INDEX [J].
CAPPELL, SE ;
LEE, R ;
MILLER, EY .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (02) :121-186
[8]  
Cappell SE, 1996, COMMUN PUR APPL MATH, V49, P869, DOI 10.1002/(SICI)1097-0312(199609)49:9<869::AID-CPA1>3.0.CO
[9]  
2-5
[10]   Seiberg-Witten monopoles in three dimensions [J].
Carey, AL ;
Wang, BL ;
Zhang, RB ;
McCarthy, J .
LETTERS IN MATHEMATICAL PHYSICS, 1997, 39 (03) :213-228