Enhancing the conductivity of transparent graphene films via doping

被引:301
作者
Kim, Ki Kang [3 ]
Reina, Alfonso [4 ]
Shi, Yumeng [5 ]
Park, Hyesung [6 ]
Li, Lain-Jong [5 ]
Lee, Young Hee [1 ,2 ]
Kong, Jing [3 ]
机构
[1] Sungkyunkwan Univ, Dept Energy Sci, Ctr Nanotubes & Nanostruct Composites, Phys Div BK21, Suwon 440746, South Korea
[2] Sungkyunkwan Univ, Sungkyunkwan Adv Inst Nanotechnol, Suwon 440746, South Korea
[3] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[4] MIT, Dept Mat Sci, Cambridge, MA 02139 USA
[5] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[6] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
关键词
FEW-LAYER GRAPHENE; LARGE-AREA; CARBON NANOTUBES; STABILITY; OXIDE;
D O I
10.1088/0957-4484/21/28/285205
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report chemical doping (p-type) to reduce the sheet resistance of graphene films for the application of high-performance transparent conducting films. The graphene film synthesized by chemical vapor deposition was transferred to silicon oxide and quartz substrates using poly(methyl methacrylate). AuCl3 in nitromethane was used to dope the graphene films and the sheet resistance was reduced by up to 77% depending on the doping concentration. The p-type doping behavior was confirmed by characterizing the Raman G-band of the doped graphene film. Atomic force microscope and scanning electron microscope images reveal the deposition of Au particles on the film. The sizes of the Au particles are 10-100 nm. The effect of doping was also investigated by transferring the graphene films onto quartz and poly(ethylene terephthalate) substrates. The sheet resistance reached 150 Omega/sq at 87% transmittance, which is comparable to those of indium tin oxide conducting film. The doping effect was manifested only with 1-2 layer graphene but not with multi-layer graphene. This approach advances the numerous applications of graphene films as transparent conducting electrodes.
引用
收藏
页数:6
相关论文
共 38 条
[1]  
ABDOU MSA, 1993, SYNTHETIC MET, V60, P93
[2]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[3]   Making graphene visible [J].
Blake, P. ;
Hill, E. W. ;
Castro Neto, A. H. ;
Novoselov, K. S. ;
Jiang, D. ;
Yang, R. ;
Booth, T. J. ;
Geim, A. K. .
APPLIED PHYSICS LETTERS, 2007, 91 (06)
[4]   Temperature dependence of the Raman spectra of graphene and graphene multilayers [J].
Calizo, I. ;
Balandin, A. A. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. .
NANO LETTERS, 2007, 7 (09) :2645-2649
[5]   The effect of substrates on the Raman spectrum of graphene: Graphene-on-sapphire and graphene-on-glass [J].
Calizo, Irene ;
Bao, Wenzhong ;
Miao, Feng ;
Lau, Chun Ning ;
Balandin, Alexander A. .
APPLIED PHYSICS LETTERS, 2007, 91 (20)
[6]  
CHAE SJ, 2009, ADV MATER, V21, P1
[7]   Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes [J].
Choi, HC ;
Shim, M ;
Bangsaruntip, S ;
Dai, HJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (31) :9058-9059
[8]   Enhanced stability of conducting poly(3-octylthiophene) thin films using organic nitrosyl compounds [J].
Ciprelli, JL ;
Clarisse, C ;
Delabouglise, D .
SYNTHETIC METALS, 1995, 74 (03) :217-222
[9]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215
[10]   Synthesis, Transfer, and Devices of Single- and Few-Layer Graphene by Chemical Vapor Deposition [J].
De Arco, Lewis Gomez ;
Zhang, Yi ;
Kumar, Akshay ;
Zhou, Chongwu .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2009, 8 (02) :135-138