THE HAMILTON-JACOBI EQUATION, INTEGRABILITY, AND NONHOLONOMIC SYSTEMS

被引:7
作者
Bates, Larry M. [1 ]
Fasso, Francesco [2 ]
Sansonetto, Nicola [2 ]
机构
[1] Univ Calgary, Dept Math, Calgary, AB T2N 1N4, Canada
[2] Univ Padua, Dipartimento Matemat, I-35121 Padua, Italy
关键词
Hamilton-Jacobi equation; complete integrability; nonholonomic mechanics;
D O I
10.3934/jgm.2014.6.441
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By examining the linkage between conservation laws and symmetry, we explain why it appears there should not be an analogue of a complete integral for the Hamilton-Jacobi equation for integrable nonholonomic systems.
引用
收藏
页码:441 / 449
页数:9
相关论文
共 30 条
[1]  
Abraham R., 1978, Foundations of Mechanics
[2]  
Arnold VI, 2001, ENCYL MATH SCI, V4, P5
[3]  
Arnold VI., 1989, MATH METHODS CLASSIC, V2nd, P60, DOI 10.1007/978-1-4757-1693-1
[4]   A unified framework for mechanics: Hamilton-Jacobi equation and applications [J].
Balseiro, P. ;
Marrero, J. C. ;
Martin de Diego, D. ;
Padron, E. .
NONLINEARITY, 2010, 23 (08) :1887-1918
[5]   Lagrangian submanifolds and the Hamilton-Jacobi equation [J].
Barbero-Linan, Maria ;
de Leon, Manuel ;
Martin de Diego, David .
MONATSHEFTE FUR MATHEMATIK, 2013, 171 (3-4) :269-290
[6]   Examples of singular nonholonomic reduction [J].
Bates, L .
REPORTS ON MATHEMATICAL PHYSICS, 1998, 42 (1-2) :231-247
[7]  
Bates L., 1996, Reports on Mathematical Physics, V37, P295, DOI 10.1016/0034-4877(96)84069-9
[8]   What is a completely integrable nonholonomic dynamical system? [J].
Bates, L ;
Cushman, R .
REPORTS ON MATHEMATICAL PHYSICS, 1999, 44 (1-2) :29-35
[9]  
Bates L., 1993, Reports on Mathematical Physics, V32, P99, DOI 10.1016/0034-4877(93)90073-N
[10]   Extended integrability and bi-Hamiltonian systems [J].
Bogoyavlenskij, OI .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 196 (01) :19-51