Berezin transform on the harmonic Fock space

被引:19
作者
Englis, Miroslav [1 ,2 ]
机构
[1] Acad Sci Czech Republic, Inst Math, CR-11567 Prague 1, Czech Republic
[2] Silesian Univ, Math Inst, Opava 74601, Czech Republic
关键词
Berezin transform; Harmonic Fock space; Harmonic Bergman kernel; Asymptotic expansion; Horn hypergeometric functions; BERGMAN SPACES; TOEPLITZ QUANTIZATION; OPERATORS; KERNELS; UNIT;
D O I
10.1016/j.jmaa.2009.12.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the Berezin transform associated to the harmonic Fock (Segal-Bargmann) space on C(n) has an asymptotic expansion analogously as in the holomorphic case. The proof involves a computation of the reproducing kernel, which turns out to be given by one of Horn's hypergeometric functions of two variables, and an ad hoc determination of the asymptotic behaviour of the resulting integrals, to which the ordinary stationary phase method is not directly applicable. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:75 / 97
页数:23
相关论文
共 24 条
[1]  
[Anonymous], 1989, ANN MATH STUD
[2]  
[Anonymous], 1953, HIGHER TRANSCENDENTA
[3]  
Axler S, 2001, Graduate Texts in Mathematics series, VSecond
[4]  
Berezin F. A., 1974, USSR IZV, V8, P1109, DOI [10.1070/IM1974v008n05ABEH002140, DOI 10.1070/IM1974V008N05ABEH002140]
[5]   TOEPLITZ-OPERATORS ON THE SEGAL-BARGMANN SPACE [J].
BERGER, CA ;
COBURN, LA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 301 (02) :813-829
[6]   TOEPLITZ QUANTIZATION OF KAHLER-MANIFOLDS AND GL(N), N-]INFINITY LIMITS [J].
BORDEMANN, M ;
MEINRENKEN, E ;
SCHLICHENMAIER, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (02) :281-296
[7]   NONPERTURBATIVE DEFORMATION QUANTIZATION OF CARTAN DOMAINS [J].
BORTHWICK, D ;
LESNIEWSKI, A ;
UPMEIER, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 113 (01) :153-176
[8]  
Coburn L.A., 1994, Algebraic Methods in Operator Theory, P101
[9]   DEFORMATION ESTIMATES FOR THE BEREZIN-TOEPLITZ QUANTIZATION [J].
COBURN, LA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (02) :415-424
[10]  
Coifman R., 1980, Representation theorems for Hardy spaces, Asterisque 77, V77, P11