Solutions of the second and fourth Painleve equations, I

被引:52
作者
Umemura, H [1 ]
Watanabe, H
机构
[1] Nagoya Univ, Grad Sch Polymath, Nagoya, Aichi 46401, Japan
[2] Kyushu Univ, Grad Sch Math, Fukuoka 810, Japan
关键词
D O I
10.1017/S0027763000006486
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A rigorous proof of the irreducibility of the second and fourth Painleve equations is given by applying Umemura's theory on algebraic differential equations ([26], [27], [28]) to the two equations. The proof consists of two parts: to determine a necessary condition for the parameters of the existence of principal ideals invariant under the Hamiltonian vector field; to determine the principal invariant ideals for a parameter where the principal invariant ideals exist. Our method is released from complicated calculation, and applicable to the proof of the irreducibility of the third, fifth and sixth equation (e.g. [32]).
引用
收藏
页码:151 / 198
页数:48
相关论文
共 34 条
[11]  
GROMAK VI, 1978, DIFF EQUAT, V14, P1510
[12]  
INCE EL, ORDINARY DIFFERENTIA
[13]  
Kolchin E., 1973, DIFFERENTIAL ALGEBRA
[14]  
Lukashevich N. A., 1967, Differ. Equ, V3, P395
[15]  
Lukashevich NA., 1971, DIFFER EQU, V7, P853
[16]   CLASSICAL-SOLUTIONS OF THE 3RD PAINLEVE EQUATION [J].
MURATA, Y .
NAGOYA MATHEMATICAL JOURNAL, 1995, 139 :37-65
[17]  
Murata Y., 1985, Funkc. Ekvacioj, V28, P1
[18]   A NOTE ON THE TRANSCEDENCY OF PAINLEVES 1ST TRANSCENDENT [J].
NISHIOKA, K .
NAGOYA MATHEMATICAL JOURNAL, 1988, 109 :63-67
[19]  
NOUMI M, 1986, COMMUNICATION
[20]  
Noumi M., 1997, Funkc. Ekvacioj, V40, P139