A non-capped tensor product of lattices

被引:1
作者
Chornomaz, Bogdan [1 ]
机构
[1] Kharkov Natl Univ, Dept Comp Sci, Kharkov, Ukraine
关键词
tensor product; semilattice; lattice; capped lattice; SEMILATTICES;
D O I
10.1007/s00012-014-0304-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In lattice theory, the tensor product is naturally defined on (, 0)-semilattices. In general, when restricted to lattices, this construction will not yield a lattice. However, if the tensor product is capped, then is a lattice. Whether the converse is true is an open problem, first posed by G. Gratzer and F. Wehrung in 2000. In the present paper, we prove that it is not so, that is, there are bounded lattices A and B such that is not capped, but is a lattice. Furthermore, A has length three and is generated by a nine-element set of atoms, while B is the dual lattice of A.
引用
收藏
页码:323 / 348
页数:26
相关论文
共 50 条
[31]   A Note on Tensor Product of Graphs [J].
Moradi, Sirous .
IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2012, 7 (01) :73-81
[32]   Tensor Product of Evolution Algebras [J].
Casado, Yolanda Cabrera ;
Barquero, Dolores Martin ;
Gonzalez, Candido Martin ;
Tocino, Alicia .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (01)
[33]   Property (Bv) and Tensor Product [J].
Aponte, Elvis ;
Vasanthakumar, Ponraj ;
Jayanthi, Narayanapillai .
SYMMETRY-BASEL, 2022, 14 (10)
[34]   Canonical Tensor Product Subfactors [J].
K.-H. Rehren .
Communications in Mathematical Physics, 2000, 211 :395-406
[35]   The tensor product of function semimodules [J].
Banagl, Markus .
ALGEBRA UNIVERSALIS, 2013, 70 (03) :213-226
[36]   Tensor product and property (b) [J].
Rashid, M. H. M. .
PERIODICA MATHEMATICA HUNGARICA, 2017, 75 (02) :376-386
[37]   Tensor product Markov chains [J].
Benkart, Georgia ;
Diaconis, Persi ;
Liebeck, Martin W. ;
Pham Huu Tiep .
JOURNAL OF ALGEBRA, 2020, 561 :17-83
[38]   On Constructivizibility of the Tensor Product of Modules [J].
I. V. Latkin .
Siberian Mathematical Journal, 2002, 43 :330-333
[39]   Tensor product of representations of quivers [J].
Das, Pradeep ;
Dubey, Umesh V. ;
Raghavendra, N. .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2024, 35 (02) :329-349
[40]   Tensor Product of Evolution Algebras [J].
Yolanda Cabrera Casado ;
Dolores Martín Barquero ;
Cándido Martín González ;
Alicia Tocino .
Mediterranean Journal of Mathematics, 2023, 20