A PRIORI ESTIMATES AND OPTIMAL FINITE ELEMENT APPROXIMATION OF THE MHD FLOW IN SMOOTH DOMAINS

被引:21
作者
He, Yinnian [1 ]
Zou, Jun [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2018年 / 52卷 / 01期
基金
中国国家自然科学基金;
关键词
MHD flow; finite element approximations; a priori estimates; error estimates; negative-norm technique; NAVIER-STOKES PROBLEM; INCOMPRESSIBLE MAGNETOHYDRODYNAMICS; SPATIAL DISCRETIZATION; EQUATIONS; STATIONARY;
D O I
10.1051/m2an/2018006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a finite element approximation of the initial-boundary value problem of the 3D incompressible magnetohydrodynamic (MHD) system under smooth domains and data. We first establish several important regularities and a priori estimates for the velocity, pressure and magnetic field (u,p, B) of the MHD system under the assumption that del u is an element of L-4 (0, T; L-2 (Omega)(3x3)) and del x B is an element of L-4(0, T; L-2(Omega)(3)). Then we formulate a finite element approximation of the MHD flow. Finally, we derive the optimal error estimates of the discrete velocity and magnetic field in energy-norm and the discrete pressure in L-2-norm, and the optimal error estimates of the discrete velocity and magnetic field in L-2-norm by means of a novel negative-norm technique, without the help of the standard duality argument for the Navier-Stokes equations.
引用
收藏
页码:181 / 206
页数:26
相关论文
共 31 条