Statements on nonlinear dynamics behavior of a pendulum, excited by a crank-shaft-slider mechanism

被引:9
作者
Avanco, Rafael Henrique [1 ]
Navarro, Helio Aparecido [1 ]
Brasil, Reyolando M. L. R. F. [2 ]
Balthazar, Jose Manoel [3 ]
Bueno, Atila Madureira [4 ]
Tusset, Angelo Marcelo [5 ]
机构
[1] Univ Sao Paulo, Dept Mech Engn, Av Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil
[2] Fed Univ ABC, Santa Adelia St 166, Santo Andre, SP, Brazil
[3] Technol Inst Aeronaut, Dept Mech Engn, Pca Mal Eduardo Gomes 50, BR-12228900 Sao Jose Dos Campos, SP, Brazil
[4] UNESP Sorocaba, Control & Automat Engn, Av Tres de Marco, BR-18087180 Sorocaba, SP, Brazil
[5] Univ Tecnol Fed Parana, Dept Math, Ponta Grossa, PR, Brazil
基金
巴西圣保罗研究基金会;
关键词
Pendulum; Parametric; Crank-shaft-slider; Chaos; MAIN PARAMETRIC RESONANCE; CHAOTIC BEHAVIOR; SYSTEM; ORBITS; VIBRATIONS; STABILITY; TRANSIENT; ENERGY;
D O I
10.1007/s11012-015-0310-1
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The nonlinear dynamics behavior analyzed, in this paper, consists in a pendulum vertically excited on the support by a crank-shaft-slider mechanism. The novelty is the obtainment and analysis of a mathematical model for the pendulum dynamics, under an excitation of a crank-slider, which is based on an extension of the mathematical model of the classical parametric pendulums. Through the modeling, it was verified that the nonlinear dynamics of the pendulum, excited by the crank-shaft-slider mechanism approaches to that of harmonic excitation, when one considered the length of the shaft is sufficient larger than the radius of the crank. The nonlinear dynamic analyses focused on observation of different kinds of motion for different values of dimensionless parameters of the adopted mathematical model. These parameters, includes the frequency of excitation, the amplitude and the geometry of the crank-shaft-slider mechanism. The adopted method of analyses used tools, such as, Lyapunov exponents, parameter space plots, basins of attractions, bifurcation diagrams, phase portraits, time histories and Poincar, sections. The kinds of motion include results on fixed point, oscillations, rotations, oscillations-rotations and chaotic motions.
引用
收藏
页码:1301 / 1320
页数:20
相关论文
共 37 条
[21]   Transient chaotic behaviour versus periodic motion of a parametric pendulum by recurrence plots [J].
Litak, Grzegorz ;
Wiercigroch, Marian ;
Horton, Bryan W. ;
Xu, Xu .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2010, 90 (01) :33-41
[22]   Nonlinear control system applied to atomic force microscope including parametric errors [J].
Nozaki R. ;
Balthazar J.M. ;
Tusset A.M. ;
De Pontes Jr. B.R. ;
Bueno A.M. .
Journal of Control, Automation and Electrical Systems, 2013, 24 (3) :223-231
[23]   Common features of the onset of the persistent chaos in nonlinear oscillators: A phenomenological approach [J].
Szemplinska-Stupnicka, W ;
Tyrkiel, E .
NONLINEAR DYNAMICS, 2002, 27 (03) :271-293
[24]   Statements on chaos control designs, including a fractional order dynamical system, applied to a "MEMS" comb-drive actuator [J].
Tusset, A. M. ;
Balthazar, J. M. ;
Bassinello, D. G. ;
Pontes, B. R., Jr. ;
Palacios Felix, Jorge Luis .
NONLINEAR DYNAMICS, 2012, 69 (04) :1837-1857
[25]   Chaos control and sensitivity analysis of a double pendulum arm excited by an RLC circuit based nonlinear shaker [J].
Tusset, Angelo Marcelo ;
Piccirillo, Vinicius ;
Bueno, Atila Madureira ;
Balthazar, Jose Manoel ;
Sado, Danuta ;
Palacios Felix, Jorge Luis ;
Lopes Rebello da Fonseca, Reyolando Manoel .
JOURNAL OF VIBRATION AND CONTROL, 2016, 22 (17) :3621-3637
[26]  
Tusset AM, 2013, SHOCK VIB, V20, P749, DOI [10.1155/2013/914864, 10.3233/SAV-130782]
[27]   On elimination of chaotic behavior in a non-ideal portal frame structural system, using both passive and active controls [J].
Tusset, Angelo Marcelo ;
Balthazar, Jose Manoel ;
Palacios Felix, Jorge Luis .
JOURNAL OF VIBRATION AND CONTROL, 2013, 19 (06) :803-813
[28]   On energy transfer phenomena, in a nonlinear ideal and nonideal essential vibrating systems, coupled to a (MR) magneto-rheological damper [J].
Tusset, Angelo Marcelo ;
Balthazar, Jose Manoel ;
Chavarette, Fabio Roberto ;
Palacios Felix, Jorge Luis .
NONLINEAR DYNAMICS, 2012, 69 (04) :1859-1880
[29]   Chaos control of chaotic pendulum system [J].
Wang, RQ ;
Jing, ZJ .
CHAOS SOLITONS & FRACTALS, 2004, 21 (01) :201-207
[30]   Autoparametric vibrations of a nonlinear system with pendulum [J].
Warminski, J. ;
Kecik, K. .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2006, 2006