Statements on nonlinear dynamics behavior of a pendulum, excited by a crank-shaft-slider mechanism

被引:9
作者
Avanco, Rafael Henrique [1 ]
Navarro, Helio Aparecido [1 ]
Brasil, Reyolando M. L. R. F. [2 ]
Balthazar, Jose Manoel [3 ]
Bueno, Atila Madureira [4 ]
Tusset, Angelo Marcelo [5 ]
机构
[1] Univ Sao Paulo, Dept Mech Engn, Av Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil
[2] Fed Univ ABC, Santa Adelia St 166, Santo Andre, SP, Brazil
[3] Technol Inst Aeronaut, Dept Mech Engn, Pca Mal Eduardo Gomes 50, BR-12228900 Sao Jose Dos Campos, SP, Brazil
[4] UNESP Sorocaba, Control & Automat Engn, Av Tres de Marco, BR-18087180 Sorocaba, SP, Brazil
[5] Univ Tecnol Fed Parana, Dept Math, Ponta Grossa, PR, Brazil
基金
巴西圣保罗研究基金会;
关键词
Pendulum; Parametric; Crank-shaft-slider; Chaos; MAIN PARAMETRIC RESONANCE; CHAOTIC BEHAVIOR; SYSTEM; ORBITS; VIBRATIONS; STABILITY; TRANSIENT; ENERGY;
D O I
10.1007/s11012-015-0310-1
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The nonlinear dynamics behavior analyzed, in this paper, consists in a pendulum vertically excited on the support by a crank-shaft-slider mechanism. The novelty is the obtainment and analysis of a mathematical model for the pendulum dynamics, under an excitation of a crank-slider, which is based on an extension of the mathematical model of the classical parametric pendulums. Through the modeling, it was verified that the nonlinear dynamics of the pendulum, excited by the crank-shaft-slider mechanism approaches to that of harmonic excitation, when one considered the length of the shaft is sufficient larger than the radius of the crank. The nonlinear dynamic analyses focused on observation of different kinds of motion for different values of dimensionless parameters of the adopted mathematical model. These parameters, includes the frequency of excitation, the amplitude and the geometry of the crank-shaft-slider mechanism. The adopted method of analyses used tools, such as, Lyapunov exponents, parameter space plots, basins of attractions, bifurcation diagrams, phase portraits, time histories and Poincar, sections. The kinds of motion include results on fixed point, oscillations, rotations, oscillations-rotations and chaotic motions.
引用
收藏
页码:1301 / 1320
页数:20
相关论文
共 37 条
[1]   Stochastic synchronization of rotating parametric pendulums [J].
Alevras, Panagiotis ;
Yurchenko, Daniil ;
Naess, Arvid .
MECCANICA, 2014, 49 (08) :1945-1954
[2]   Nonlinear control in an electromechanical transducer with chaotic behaviour [J].
Balthazar, Jose Manoel ;
Bassinello, Dailhane Grabowski ;
Tusset, Angelo Marcelo ;
Bueno, Atila Madureira ;
de Pontes Junior, Bento Rodrigues .
MECCANICA, 2014, 49 (08) :1859-1867
[3]   Microcantilever chaotic motion suppression in tapping mode atomic force microscope [J].
Balthazar, Jose Manoel ;
Tusset, Angelo Marcelo ;
Thomaz de Souza, Silvio Luiz ;
Bueno, Atila Madureira .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2013, 227 (08) :1730-1741
[4]   Using transient and steady state considerations to investigate the mechanism of loss of stability of a dynamical system [J].
Belato, D ;
Weber, HI ;
Balthazar, JM .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 164 (02) :605-613
[5]   Chaotic vibrations of a nonideal electro-mechanical system [J].
Belato, D ;
Weber, HI ;
Balthazar, JM ;
Mook, DT .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2001, 38 (10-13) :1699-1706
[6]  
Brasil RMLRF, 2013, P 14 PAN AM C APPL M, V1, P35
[7]   Parametric resonance [J].
Butikov, EI .
COMPUTING IN SCIENCE & ENGINEERING, 1999, 1 (03) :76-83
[8]   ROTATING PERIODIC-ORBITS OF THE PARAMETRICALLY EXCITED PENDULUM [J].
CLIFFORD, MJ ;
BISHOP, SR .
PHYSICS LETTERS A, 1995, 201 (2-3) :191-196
[9]   Locating oscillatory orbits of the parametrically-excited pendulum [J].
Clifford, MJ ;
Bishop, SR .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1996, 37 :309-319
[10]   BIFURCATION CONTROL OF A PARAMETRIC PENDULUM [J].
De Paula, Aline S. ;
Savi, Marcelo A. ;
Wiercigroch, Marian ;
Pavlovskaia, Ekaterina .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (05)