Inhibition of Mef2a Enhances Neovascularization via Post-transcriptional Regulation of 14q32 MicroRNAs miR-329 and miR-494

被引:16
|
作者
Welten, Sabine M. J. [1 ,2 ]
de Vries, Margreet R. [1 ,2 ]
Peters, Erna A. B. [1 ,2 ]
Agrawal, Sudhir [3 ]
Quax, Paul H. A. [1 ,2 ]
Nossent, A. Yael [1 ,2 ]
机构
[1] Leiden Univ, Med Ctr, Dept Surg, NL-2333 Leiden, Netherlands
[2] Leiden Univ, Med Ctr, Einthoven Lab Expt Vasc Med, NL-2333 ZA Leiden, Netherlands
[3] Idera Pharmaceut, Boston, MA 02139 USA
来源
关键词
SMOOTH-MUSCLE-CELLS; GENE; CLUSTER; PROLIFERATION; MECHANISMS; EXPRESSION;
D O I
10.1016/j.omtn.2017.03.003
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Improving the efficacy of neovascularization is a promising strategy to restore perfusion of ischemic tissues in patients with peripheral arterial disease. The 14q32 microRNA cluster is highly involved in neovascularization. The Mef2a transcription factor has been shown to induce transcription of the microRNAs within this cluster. We inhibited expression of Mef2a using gene-silencing oligonucleotides (GSOs) in an in vivo hind limb ischemia model. Treatment with GSO-Mef2a clearly improved blood flow recovery within 3 days (44% recovery versus 25% recovery in control) and persisted until 14 days after ischemia induction (80% recovery versus 60% recovery in control). Animals treated with GSO-Mef2a showed increased arteriogenesis and angiogenesis in the relevant muscle tissues. Inhibition of Mef2a decreased expression of 14q32 microRNAs miR-329 (p = 0.026) and miR-494 (trend, p = 0.06), but not of other 14q32 microRNAs, nor of 14q32 microRNA precursors. Because Mef2a did not influence 14q32 microRNA transcription, we hypothesized it functions as an RNA-binding protein that influences processing of 14q32 microRNA miR-329 and miR-494. Mef2A immunoprecipitation followed by RNA isolation and rt/qPCR confirmed direct binding of MEF2A to pri-miR-494, supporting this hypothesis. Our study demonstrates a novel function for Mef2a in post-ischemic neovascularization via post-transcriptional regulation of 14q32 microRNAs miR-329 and miR-494.
引用
收藏
页码:61 / 70
页数:10
相关论文
共 6 条
  • [1] Inhibition of MEF2A Using 3rd Generation Antisense Enhances Neovascularization via Posttranscriptional Regulation of 14q32 MicroRNAs miR-329 and miR-494
    Welten, Sabine
    de Vries, Margreet
    Peters, Erna
    Agrawal, Sudhir
    Quax, Paul
    Nossent, Anne Yael
    CIRCULATION, 2016, 134
  • [2] Inhibition of 14q32 MicroRNAs miR-329, miR-487b, miR-494, and miR-495 Increases Neovascularization and Blood Flow Recovery After Ischemia
    Welten, Sabine M. J.
    Bastiaansen, Antonius J. N. M.
    de Jong, Rob C. M.
    de Vries, Margreet R.
    Peters, Erna A. B.
    Boonstra, Martin C.
    Sheikh, Soren P.
    La Monica, Nicola
    Kandimalla, Ekambar R.
    Quax, Paul H. A.
    Nossent, A. Yael
    CIRCULATION RESEARCH, 2014, 115 (08) : 696 - +
  • [3] Synergistic Post-Transcriptional Regulation of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) by miR-101 and miR-494 Specific Binding
    Megiorni, Francesca
    Cialfi, Samantha
    Dominici, Carlo
    Quattrucci, Serena
    Pizzuti, Antonio
    PLOS ONE, 2011, 6 (10):
  • [4] Post-transcriptional Regulation of MMP16 and TIMP2 Expression via miR-382, miR-410 and miR-200b in Endometrial Cancer
    Rak, Beata
    Mehlich, Dawid
    Garbicz, Filip
    Domosud, Zofia
    Paskal, Wiktor
    Marczewska, Janina M.
    Wlodarski, Pawel K.
    CANCER GENOMICS & PROTEOMICS, 2017, 14 (05) : 389 - 401
  • [5] MiR-520d-3p antitumor activity in human breast cancer via post-transcriptional regulation of spindle and kinetochore associated 2 expression
    Ren, Zhouhui
    Yang, Tong
    Ding, Jie
    Liu, Weihong
    Meng, Xiangyu
    Zhang, Pingping
    Liu, Kaitai
    Wang, Ping
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2018, 10 (04): : 1097 - 1108
  • [6] Mechanical Stretch Induces Smooth Muscle Cell Dysfunction by Regulating ACE2 via P38/ATF3 and Post-transcriptional Regulation by miR-421
    Liu, Xiaolin
    Liu, Xinxin
    Li, Mengmeng
    Zhang, Yu
    Chen, Weijia
    Zhang, Meng
    Zhang, Cheng
    Zhang, Mei
    FRONTIERS IN PHYSIOLOGY, 2021, 11