Detection of Power Transformer Fault Conditions using Optical Characteristics of Transformer Oil

被引:0
作者
Fauzi, Nur Afini [1 ]
Thiviyanathan, Vimal Angela [1 ]
Leong, Yang Sing [1 ]
Ker, Pin Jern [1 ]
Jamaludin, M. Z. [1 ]
Nomanbhay, Saiffuddin M. [1 ]
Looe, H. M. [2 ]
Lo, C. K. [2 ]
机构
[1] Univ Tenaga Nas, Photon Technol Res Grp, Inst Power Engn, Jalan IKRAM UNITEN, Kajang 43000, Selangor, Malaysia
[2] TNB Res Sdn Bhd, Jalan Ayer Itam, Kajang 43000, Selangor, Malaysia
来源
2018 IEEE 7TH INTERNATIONAL CONFERENCE ON PHOTONICS (ICP) | 2018年
关键词
main transformer tank; On-load-tap-changer; spectrophotometer; transformer oil aging; DISSOLVED-GAS ANALYSIS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Power transformers are important in the power transmission and distribution network. A continuous monitoring of the transformer is important in ensuring the prolonged service of the transformer. This paper focuses on the characterization of transformer oil using optical detection method. 10 Transformer oil samples from the main tanks and 11 oil samples from the on-load-tap-changer (OLTC) were obtained for the optical characterization from 200 to 3300 nm. Based on the conventional results interpretation using dissolved gas analysis (DGA) and Duval Triangle, the optical characteristics of the samples in 2120 to 2220 nm clearly demonstrate the detection of electrical discharges of high energy (D2), electrical discharges of low energy (D1) and thermal faults at temperatures above 700 degrees C (T3) faults. This approach provides a quicker and cheaper method to determine the condition of power transformers based on the optical characteristics of transformer oil.
引用
收藏
页数:3
相关论文
共 50 条
[31]   A Hybrid Optimization Technique for Fault Classification in Power Transformer Using Dissolved Gas Analysis [J].
Gomathy, V. ;
Sumathi, S. .
ADVANCEMENTS IN AUTOMATION AND CONTROL TECHNOLOGIES, 2014, 573 :708-715
[32]   Performance assessment of machine learning techniques in electronic nose systems for power transformer fault detection [J].
Araya, Sergi Torres ;
Ardila-Rey, Jorge ;
Luna, Matias Cerda ;
Portilla, Jorge ;
Govindarajan, Suganya ;
Jorquera, Camilo Alvear ;
Schurch, Roger .
ENERGY AND AI, 2025, 20
[33]   Dissolved Gas Analysis of Insulating Oil for Power Transformer Fault Diagnosis Based on ReLU-DBN [J].
Dai J. ;
Song H. ;
Yang Y. ;
Chen Y. ;
Sheng G. ;
Jiang X. .
Dianwang Jishu/Power System Technology, 2018, 42 (02) :658-664
[34]   Power Transformer Fault Diagnosis under Measurement Originated Uncertainties [J].
Ma, Hui ;
Ekanayake, Chandima ;
Saha, Tapan K. .
IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2012, 19 (06) :1982-1990
[35]   Fault Diagnosis of Power Transformer Based on DGA and Information Fusion [J].
Sun, Chengqun ;
Chen, Yu ;
Tang, Ning .
2022 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (I&CPS ASIA 2022), 2022, :247-251
[36]   Hybrid Condition Monitoring System for Power Transformer Fault Diagnosis [J].
Baker, Engin ;
Nese, Secil Varbak ;
Dursun, Erkan .
ENERGIES, 2023, 16 (03)
[37]   Fault diagnosis of transformer using artificial intelligence: A review [J].
Zhang, Yan ;
Tang, Yufeng ;
Liu, Yongqiang ;
Liang, Zhaowen .
FRONTIERS IN ENERGY RESEARCH, 2022, 10
[38]   Transformer fault diagnosis using continuous sparse autoencoder [J].
Wang, Lukun ;
Zhao, Xiaoying ;
Pei, Jiangnan ;
Tang, Gongyou .
SPRINGERPLUS, 2016, 5
[39]   Analysis of transformer oil degradation due to thermal stress using optical spectroscopic techniques [J].
Kalathiripi, Hussain ;
Karmakar, Subrata .
INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2017, 27 (09)
[40]   Power Transformer Fault Diagnosis Using Random Forest and Optimized Kernel Extreme Learning Machine [J].
Kari, Tusongjiang ;
He, Zhiyang ;
Rouzi, Aisikaer ;
Zhang, Ziwei ;
Ma, Xiaojing ;
Du, Lin .
INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 37 (01) :691-705