Enhanced D-ribose production by genetic modification and medium optimization in Bacillus subtilis 168

被引:4
作者
Zhao, Chen [1 ]
Zhao, Xiang-Ying [1 ]
Liu, Jian-Jun [1 ]
Zhang, Jun-Jiao [1 ]
Zhang, Jia-Xiang [1 ]
Zhang, Li-He [1 ]
机构
[1] Shandong Food Ferment Ind Res & Design Inst, Key Lab Food & Fermentat Engn Shandong Prov, Jinan 250013, Shandong, Peoples R China
关键词
Bacillus subtilis; D-ribose; Transketolase; Genetic Modification; Fermentation; TRANSKETOLASE DEFICIENT STRAIN; PUMILUS; BIOSYNTHESIS; FERMENTATION; GENOME; SPK1;
D O I
10.1007/s11814-017-0356-y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
D-ribose, a five-carbon sugar with diverse applications, is mainly produced by transketolase(tkt)-deficient Bacillus subtilis (B. Subtilis). We constructed B.subtilis SFR-3A by replacing the corresponding sites of B. subtilis 168 with the mutation site of tkt in the "wild" D-ribose high-producing strain B. subtilis SFR-4, resulting in 5.29 g/L of D-ribose. In the meantime, B.subtilis SFR-159 was constructed by completely removing the tkt gene of B. subtilis 168 with a higher production of 6.21 g/L. Through medium optimization, batch fermentation of SFR-3A and SFR-159 gave the best result of 27.56 g/L and 29.89 g/L, which corresponds to productivity of 0.51 g/L/h and 0.41 g/L/h, respectively. In this work, SFR-3A showed more latent capacity over SFR-159 as to productivity and had greater potential to serve as a platform for D-ribose production.
引用
收藏
页码:1137 / 1143
页数:7
相关论文
共 26 条
  • [1] An updated metabolic view of the Bacillus subtilis 168 genome
    Belda, Eugeni
    Sekowska, Agnieszka
    Le Fevre, Francois
    Morgat, Anne
    Mornico, Damien
    Ouzounis, Christos
    Vallenet, David
    Medigue, Claudine
    Danchin, Antoine
    [J]. MICROBIOLOGY-SGM, 2013, 159 : 757 - 770
  • [2] Efficient biosynthesis of d-ribose using a novel co-feeding strategy in Bacillus subtilis without acid formation
    Cheng, J.
    Zhuang, W.
    Li, N. N.
    Tang, C. L.
    Ying, H. J.
    [J]. LETTERS IN APPLIED MICROBIOLOGY, 2017, 64 (01) : 73 - 78
  • [3] DeWulf P, 1997, APPL MICROBIOL BIOT, V48, P141
  • [4] Optimization of medium components for D-ribose production by transketolase-deficient Bacillus subtilis NJT-1507
    Fang, Ting
    Chen, Xiaochun
    Li, Nan
    Song, He
    Bai, Jianxin
    Xiong, Jian
    Ying, Hanjie
    [J]. KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2010, 27 (06) : 1725 - 1729
  • [5] D-ribose aids advanced ischemic heart failure patients
    MacCarter, Dean
    Vijay, Nampalli
    Washam, Melinda
    Shecterle, Linda
    Sierminski, Helen
    St Cyr, J. A.
    [J]. INTERNATIONAL JOURNAL OF CARDIOLOGY, 2009, 137 (01) : 79 - 80
  • [6] Transformation of Environmental Bacillus subtilis Isolates by Transiently Inducing Genetic Competence
    Nijland, Reindert
    Burgess, J. Grant
    Errington, Jeff
    Veening, Jan-Willem
    [J]. PLOS ONE, 2010, 5 (03):
  • [7] Production of D-ribose by metabolically engineered Escherichia coli
    Park, Hae-Chul
    Kim, Yun-Jung
    Lee, Chang-Wan
    Rho, Yong-Taek
    Kang, JeongWoo
    Lee, Dae-Hee
    Seong, Yeong-Je
    Park, Yong-Cheol
    Lee, Daesang
    Kim, Sung-Gun
    [J]. PROCESS BIOCHEMISTRY, 2017, 52 : 73 - 77
  • [8] Characterization of D-ribose biosynthesis in Bacillus subtilis JY200 deficient in transketolase gene
    Park, YC
    Choi, JH
    Bennett, GN
    Seo, JH
    [J]. JOURNAL OF BIOTECHNOLOGY, 2006, 121 (04) : 508 - 516
  • [9] Fed-batch production of D-ribose from sugar mixtures by transketolase-deficient Bacillus subtilis SPK1
    Park, YC
    Kim, SG
    Park, K
    Lee, KH
    Seo, JH
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2004, 66 (03) : 297 - 302
  • [10] Park YC, 2004, J MICROBIOL BIOTECHN, V14, P665