Recursive nonlinear-system identification using latent variables

被引:25
作者
Mattsson, Per [1 ]
Zachariah, Dave [2 ]
Stoica, Petre [2 ]
机构
[1] Univ Gavle, Dept Elect Math & Nat Sci, Gavle, Sweden
[2] Uppsala Univ, Dept Informat Technol, Uppsala, Sweden
基金
瑞典研究理事会;
关键词
Nonlinear systems; Multi-input/multi-output systems; System identification; PREDICTION ERROR IDENTIFICATION; PIECEWISE AFFINE;
D O I
10.1016/j.automatica.2018.03.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we develop a method for learning nonlinear system models with multiple outputs and inputs. We begin by modeling the errors of a nominal predictor of the system using a latent variable framework. Then using the maximum likelihood principle we derive a criterion for learning the model. The resulting optimization problem is tackled using a majorization-minimization approach. Finally, we develop a convex majorization technique and show that it enables a recursive identification method. The method learns parsimonious predictive models and is tested on both synthetic and real nonlinear systems. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:343 / 351
页数:9
相关论文
共 50 条
  • [41] Fuzzy identification of nonuniformly sampled nonlinear systems based on forwards recursive input–output clustering
    Ranran Liu
    Enxing Zheng
    Feng Li
    Wei Guo
    Yifeng Jiang
    Neural Computing and Applications, 2024, 36 : 2315 - 2322
  • [42] Nonlinear system identification
    Robert D. Nowak
    Circuits, Systems and Signal Processing, 2002, 21 : 109 - 122
  • [43] A methodology for control-relevant nonlinear system identification using restricted complexity models
    Ling, WM
    Rivera, DE
    JOURNAL OF PROCESS CONTROL, 2001, 11 (02) : 209 - 222
  • [44] Nonlinear system identification
    Nowak, RD
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2002, 21 (01) : 109 - 122
  • [45] Adaptive recursive system identification using optimally tuned Kalman filter by the metaheuristic algorithm
    Janjanam, Lakshminarayana
    Saha, Suman Kumar
    Kar, Rajib
    Mandal, Durbadal
    SOFT COMPUTING, 2024, 28 (11-12) : 7013 - 7037
  • [46] Recursive system identification for Havriliak-Negami functions by using modified LMRPEM method
    Duhe, Jean-Francois
    Victor, Stephane
    Melchior, Pierre
    IFAC PAPERSONLINE, 2024, 58 (12): : 13 - 18
  • [47] On-line Identification of an Electro-hydraulic System using Recursive Least Square
    Ghazali, Rozaimi
    Sam, Yahaya Md
    Rahmat, Mohd Fua'ad
    Zulfatman
    2009 IEEE STUDENT CONFERENCE ON RESEARCH AND DEVELOPMENT: SCORED 2009, PROCEEDINGS, 2009, : 471 - 474
  • [48] Nonlinear dynamic system identification using least squares support vector machine regression
    Wang, XD
    Ye, MY
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 941 - 945
  • [49] Nonlinear thermal system identification using fractional Volterra series
    Maachou, Asma
    Malti, Rachid
    Melchior, Pierre
    Battaglia, Jean-Luc
    Oustaloup, Alain
    Hay, Bruno
    CONTROL ENGINEERING PRACTICE, 2014, 29 : 50 - 60
  • [50] Identification of nonlinear dynamic system using machine learning techniques
    Samal D.
    Bisoi R.
    Sahu B.
    International Journal of Power and Energy Conversion, 2021, 12 (01) : 23 - 43