Recursive nonlinear-system identification using latent variables

被引:25
作者
Mattsson, Per [1 ]
Zachariah, Dave [2 ]
Stoica, Petre [2 ]
机构
[1] Univ Gavle, Dept Elect Math & Nat Sci, Gavle, Sweden
[2] Uppsala Univ, Dept Informat Technol, Uppsala, Sweden
基金
瑞典研究理事会;
关键词
Nonlinear systems; Multi-input/multi-output systems; System identification; PREDICTION ERROR IDENTIFICATION; PIECEWISE AFFINE;
D O I
10.1016/j.automatica.2018.03.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we develop a method for learning nonlinear system models with multiple outputs and inputs. We begin by modeling the errors of a nominal predictor of the system using a latent variable framework. Then using the maximum likelihood principle we derive a criterion for learning the model. The resulting optimization problem is tackled using a majorization-minimization approach. Finally, we develop a convex majorization technique and show that it enables a recursive identification method. The method learns parsimonious predictive models and is tested on both synthetic and real nonlinear systems. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:343 / 351
页数:9
相关论文
共 50 条
  • [31] Recursive identification of errors-in-variables models with correlated output noise
    Barbieri, Matteo
    Diversi, Roberto
    IFAC PAPERSONLINE, 2021, 54 (07): : 363 - 368
  • [32] Recursive algorithm for interaction prediction in Hammerstein system identification with experimental studies
    Mielcarek, Pawel
    Mzyk, Grzegorz
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2023, 43 (02) : 134 - 144
  • [33] Nonlinear System Identification Using Deterministic Multilevel Sequences
    Ahmet H. Kayran
    Ender M. Eksioglu
    Circuits, Systems and Signal Processing, 2005, 24 : 151 - 181
  • [34] Nonlinear System Identification Using Laguerre Wavelet Models
    Aadaleesan, P.
    Saha, Prabirkumar
    CHEMICAL PRODUCT AND PROCESS MODELING, 2008, 3 (02):
  • [35] Improved Recursive Least Squares Algorithm Based on Echo State Neural Network for Nonlinear System Identification
    Song Qingsong
    Zhao Xiangmo
    Feng Zuren
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 1692 - 1695
  • [36] A Generalized Stochastic Approximation for the Recursive System Identification
    Chernyshov, Kirill R.
    IFAC PAPERSONLINE, 2023, 56 (02): : 7765 - +
  • [37] Nonlinear System Identification Using Extreme Learning Machine
    Li, Ming-Bin
    Er, Meng Joo
    2006 9TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1- 5, 2006, : 576 - +
  • [38] Nonlinear system identification using modified variational autoencoders
    Paniagua, Jose L.
    Lopez, Jesus A.
    INTELLIGENT SYSTEMS WITH APPLICATIONS, 2024, 22
  • [39] Individually Weighted Modified Logarithmic Hyperbolic Sine Curvelet Based Recursive FLN for Nonlinear System Identification
    Chikyal, Neetu
    Vasundhara, Chayan
    Bhar, Chayan
    Kar, Asutosh
    Christensen, Mads Graesboll
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2025, 44 (01) : 306 - 337
  • [40] Errors-in-variables system identification using structural equation modeling
    Kreiberg, David
    Soderstrom, Torsten
    Yang-Wallentin, Fan
    AUTOMATICA, 2016, 66 : 218 - 230