Recursive nonlinear-system identification using latent variables

被引:25
|
作者
Mattsson, Per [1 ]
Zachariah, Dave [2 ]
Stoica, Petre [2 ]
机构
[1] Univ Gavle, Dept Elect Math & Nat Sci, Gavle, Sweden
[2] Uppsala Univ, Dept Informat Technol, Uppsala, Sweden
基金
瑞典研究理事会;
关键词
Nonlinear systems; Multi-input/multi-output systems; System identification; PREDICTION ERROR IDENTIFICATION; PIECEWISE AFFINE;
D O I
10.1016/j.automatica.2018.03.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we develop a method for learning nonlinear system models with multiple outputs and inputs. We begin by modeling the errors of a nominal predictor of the system using a latent variable framework. Then using the maximum likelihood principle we derive a criterion for learning the model. The resulting optimization problem is tackled using a majorization-minimization approach. Finally, we develop a convex majorization technique and show that it enables a recursive identification method. The method learns parsimonious predictive models and is tested on both synthetic and real nonlinear systems. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:343 / 351
页数:9
相关论文
共 50 条
  • [21] Algorithms for recursive/semi-recursive bias-compensating least squares system identification within the errors-in-variables framework
    Linden, Jens G.
    Larkowski, Tomasz
    Burnham, Keith J.
    INTERNATIONAL JOURNAL OF CONTROL, 2012, 85 (11) : 1625 - 1643
  • [22] Recursive System Identification Using Outlier-Robust Local Models
    Bessa, Jessyca A.
    Barreto, Guilherme A.
    IFAC PAPERSONLINE, 2019, 52 (01): : 436 - 441
  • [23] ADMM-Based Distributed Recursive Identification of Wiener Nonlinear Systems Using WSNs
    Gupta, Saurav
    Sahoo, Ajit Kumar
    Sahoo, Upendra Kumar
    IEEE INDICON: 15TH IEEE INDIA COUNCIL INTERNATIONAL CONFERENCE, 2018,
  • [24] Nonlinear System Identification With Gaussian Processes Using Laguerre and Kautz Filters
    Illg, Christopher
    Balar, Nishilkumar
    Nelles, Oliver
    ASME Letters in Dynamic Systems and Control, 2025, 5 (04):
  • [25] System identification of nonlinear mechanical systems using embedded sensitivity functions
    Yang, CH
    Adams, DE
    Ciray, S
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2005, 127 (06): : 530 - 541
  • [26] Estimating Dynamics in Particle Tracking Microscopy Using Nonlinear System Identification
    Ashley, Trevor T.
    Andersson, Sean B.
    IFAC PAPERSONLINE, 2015, 48 (28): : 805 - 810
  • [27] Nonlinear System Identification Using Temporal Convolutional Networks: A Silverbox Study
    Maroli, John M.
    Ozguner, Umit
    Redmill, Keith
    IFAC PAPERSONLINE, 2019, 52 (29): : 186 - 191
  • [28] Nonlinear System Identification Using Compressed Sensing
    Naik, Manjish
    Cochran, Douglas
    2012 CONFERENCE RECORD OF THE FORTY SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2012, : 426 - 430
  • [29] Nonlinear system identification using wavelet networks
    Liu, GP
    Billings, SA
    Kadirkamanathan, V
    UKACC INTERNATIONAL CONFERENCE ON CONTROL '98, VOLS I&II, 1998, : 1248 - 1253
  • [30] RECURSIVE SYSTEM IDENTIFICATION BY STOCHASTIC APPROXIMATION
    Chen, Han-Fu
    COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2006, 6 (04) : 253 - 272