Large-scale high-temperature solar energy storage using natural minerals

被引:138
作者
Benitez-Guerrero, Monica [1 ,2 ]
Sarrion, Beatriz [2 ]
Perejon, Antonio [2 ,3 ]
Sanchez-Jimenez, Pedro E. [2 ]
Perez-Maqueda, Luis A. [2 ]
Manuel Valverde, Jose [1 ]
机构
[1] Univ Seville, Fac Fis, Ave Reina Mercedes S-N, E-41012 Seville, Spain
[2] Univ Seville, CSIC, Inst Ciencia Mat Sevilla, C Americo Vespucio 49, Seville 41092, Spain
[3] Univ Seville, Fac Quim, Dept Quim Inorgan, E-41071 Seville, Spain
关键词
Concentrated Solar Power; Natural carbonates; Multicyde conversion; CaL-CSP storage; CaL-CO2; capture; Particle size; CO2; CAPTURE; LOOPING PROCESS; PRODUCT LAYER; CALCIUM-OXIDE; CAO; POWER; CALCINATION; DOLOMITE; DECOMPOSITION; CONVERSION;
D O I
10.1016/j.solmat.2017.04.013
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The present work is focused on thermochemical energy storage (TCES) in Concentrated Solar Power (CSP) plants by means of the Calcium-Looping (CaL) process using cheap, abundant and non-toxic natural carbonate minerals. CaL conditions for CSP storage involve calcination of CaCO3 in the solar receiver at relatively low temperature whereas carbonation of CaO is carried out at high temperature and high CO2 concentration to use the heat of reaction for power production by means of a CO2 closed power cycle. Under these conditions, large CaO particles derived from limestone to be used in industrial processes are rapidly deactivated due to pore plugging, which limits the extent of the reaction. This is favored by the relatively small pores of the CaO skeleton generated by low temperature calcination, the large thickness of the CaCO3 layer built upon the CaO surface and the very fast carbonation kinetics. On the other hand, at CaL conditions for CSP storage does not limit carbonation of CaO derived from dolomite (dolime). Dolime is shown to exhibit a high multicycle conversion regardless of particle size, which is explained by the presence of inert MgO grains that allow the reacting gas to percolate inside the porous particles.
引用
收藏
页码:14 / 21
页数:8
相关论文
共 50 条
  • [41] Carbonate looping experiments in a 1 MWth pilot plant and model validation
    Stroehle, Jochen
    Junk, Markus
    Kremer, Johannes
    Galloy, Alexander
    Epple, Bernd
    [J]. FUEL, 2014, 127 : 13 - 22
  • [42] The effect of CaO sintering on cyclic CO2 capture in energy systems
    Sun, P.
    Grace, J. R.
    Lim, C. J.
    Anthony, E. J.
    [J]. AICHE JOURNAL, 2007, 53 (09) : 2432 - 2442
  • [43] Ionic diffusion through Calcite (CaCO3) layer during the reaction of CaO and CO2
    Sun, Zhenchao
    Luo, Siwei
    Qi, Pengpeng
    Fan, Liang-Shih
    [J]. CHEMICAL ENGINEERING SCIENCE, 2012, 81 : 164 - 168
  • [44] Utikar R., 2010, HYDRODYN SIMUL C SEP
  • [45] Limestone Calcination Nearby Equilibrium: Kinetics, CaO Crystal Structure, Sintering and Reactivity
    Valverde, J. M.
    Sanchez-Jimenez, P. E.
    Perez-Maqueda, L. A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (04) : 1623 - 1641
  • [46] Ca-looping for postcombustion CO2 capture: A comparative analysis on the performances of dolomite and limestone
    Valverde, J. M.
    Sanchez-Jimenez, P. E.
    Perez-Maqueda, L. A.
    [J]. APPLIED ENERGY, 2015, 138 : 202 - 215
  • [47] Thermal decomposition of dolomite under CO2: insights from TGA and in situ XRD analysis
    Valverde, Jose Manuel
    Perejon, Antonio
    Medina, Santiago
    Perez-Maqueda, Luis A.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (44) : 30162 - 30176
  • [48] Improving the thermal properties of NaNO3-KNO3 for concentrating solar power by adding additives
    Wu, Yu-ting
    Li, Ying
    Ren, Nan
    Ma, Chong-fang
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 160 : 263 - 268
  • [49] Concentrated solar power plants: Review and design methodology
    Zhang, H. L.
    Baeyens, J.
    Degreve, J.
    Caceres, G.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 22 : 466 - 481
  • [50] Simulation of gas flow pattern and separation efficiency in cyclone with conventional single and spiral double inlet configuration
    Zhao, B.
    Su, Y.
    Zhang, J.
    [J]. CHEMICAL ENGINEERING RESEARCH & DESIGN, 2006, 84 (A12) : 1158 - 1165