Large-scale high-temperature solar energy storage using natural minerals

被引:138
作者
Benitez-Guerrero, Monica [1 ,2 ]
Sarrion, Beatriz [2 ]
Perejon, Antonio [2 ,3 ]
Sanchez-Jimenez, Pedro E. [2 ]
Perez-Maqueda, Luis A. [2 ]
Manuel Valverde, Jose [1 ]
机构
[1] Univ Seville, Fac Fis, Ave Reina Mercedes S-N, E-41012 Seville, Spain
[2] Univ Seville, CSIC, Inst Ciencia Mat Sevilla, C Americo Vespucio 49, Seville 41092, Spain
[3] Univ Seville, Fac Quim, Dept Quim Inorgan, E-41071 Seville, Spain
关键词
Concentrated Solar Power; Natural carbonates; Multicyde conversion; CaL-CSP storage; CaL-CO2; capture; Particle size; CO2; CAPTURE; LOOPING PROCESS; PRODUCT LAYER; CALCIUM-OXIDE; CAO; POWER; CALCINATION; DOLOMITE; DECOMPOSITION; CONVERSION;
D O I
10.1016/j.solmat.2017.04.013
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The present work is focused on thermochemical energy storage (TCES) in Concentrated Solar Power (CSP) plants by means of the Calcium-Looping (CaL) process using cheap, abundant and non-toxic natural carbonate minerals. CaL conditions for CSP storage involve calcination of CaCO3 in the solar receiver at relatively low temperature whereas carbonation of CaO is carried out at high temperature and high CO2 concentration to use the heat of reaction for power production by means of a CO2 closed power cycle. Under these conditions, large CaO particles derived from limestone to be used in industrial processes are rapidly deactivated due to pore plugging, which limits the extent of the reaction. This is favored by the relatively small pores of the CaO skeleton generated by low temperature calcination, the large thickness of the CaCO3 layer built upon the CaO surface and the very fast carbonation kinetics. On the other hand, at CaL conditions for CSP storage does not limit carbonation of CaO derived from dolomite (dolime). Dolime is shown to exhibit a high multicycle conversion regardless of particle size, which is explained by the presence of inert MgO grains that allow the reacting gas to percolate inside the porous particles.
引用
收藏
页码:14 / 21
页数:8
相关论文
共 50 条
  • [11] Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle
    Chacartegui, R.
    Alovisio, A.
    Ortiz, C.
    Valverde, J. M.
    Verda, V.
    Becerra, J. A.
    [J]. APPLIED ENERGY, 2016, 173 : 589 - 605
  • [12] Chacartegui R., Patent No. [P201500493, 201500493]
  • [13] Opportunities and challenges for a sustainable energy future
    Chu, Steven
    Majumdar, Arun
    [J]. NATURE, 2012, 488 (7411) : 294 - 303
  • [14] Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions
    Cot-Gores, Jaume
    Castell, Albert
    Cabeza, Luisa F.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (07) : 5207 - 5224
  • [15] Cussler E. L, 2009, DIFFUSION MASS TRANS, DOI 10.1002/aic.690310333
  • [16] Effect of dolomite decomposition under CO2 on its multicycle CO2 capture behaviour under calcium looping conditions
    de la Calle Martos, Antonio
    Manuel Valverde, Jose
    Sanchez-Jimenez, Pedro E.
    Perejon, Antonio
    Garcia-Garrido, Cristina
    Perez-Maqueda, Luis A.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (24) : 16325 - 16336
  • [17] Progress in Calcium Looping Post Combustion CO2 Capture: Successful Pilot Scale Demonstration
    Dieter, Heiko
    Hawthorne, Craig
    Zieba, Mariusz
    Scheffknecht, Guenter
    [J]. GHGT-11, 2013, 37 : 48 - 56
  • [18] Calcium looping sorbents for CO2 capture
    Erans, Maria
    Manovic, Vasilije
    Anthony, Edward J.
    [J]. APPLIED ENERGY, 2016, 180 : 722 - 742
  • [19] Development of new molten salts with LiNO3 and Ca(NO3)2 for energy storage in CSP plants
    Fernandez, A. G.
    Ushak, S.
    Galleguillos, H.
    Perez, F. J.
    [J]. APPLIED ENERGY, 2014, 119 : 131 - 140
  • [20] EXPERIMENTAL ASPECTS OF THE THERMOCHEMICAL CONVERSION OF SOLAR-ENERGY - DECARBONATION OF CACO3
    FLAMANT, G
    HERNANDEZ, D
    BONET, C
    TRAVERSE, JP
    [J]. SOLAR ENERGY, 1980, 24 (04) : 385 - 395