Machine learning models to predict electroencephalographic seizures in critically ill children

被引:7
|
作者
Hu, Jian [1 ]
Fung, France W. [3 ,4 ,5 ]
Jacobwitz, Marin [3 ]
Parikh, Darshana S. [2 ,8 ]
Vala, Lisa [8 ]
Donnelly, Maureen [8 ]
Topjian, Alexis A. [2 ,6 ]
Abend, Nicholas S. [3 ,4 ,5 ,6 ,7 ,8 ]
Xiao, Rui [1 ,7 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[2] Childrens Hosp Philadelphia, Dept Anesthesia & Crit Care Med, Philadelphia, PA 19104 USA
[3] Childrens Hosp Philadelphia, Dept Pediat, Div Neurol, Philadelphia, PA 19104 USA
[4] Univ Penn, Dept Neurol, Perelman Sch Med, Philadelphia, PA 19104 USA
[5] Univ Penn, Dept Pediat, Perelman Sch Med, Philadelphia, PA 19104 USA
[6] Univ Penn, Dept Anesthesia & Crit Care, Perelman Sch Med, Philadelphia, PA 19104 USA
[7] Univ Penn, Ctr Clin Epidemiol & Biostat, Perelman Sch Med, Philadelphia, PA 19104 USA
[8] Childrens Hosp Philadelphia, Dept Neurodiagnost, Philadelphia, PA 19104 USA
来源
SEIZURE-EUROPEAN JOURNAL OF EPILEPSY | 2021年 / 87卷
关键词
Seizure; Pediatric; Electroencephalogram; EEG monitoring; Machine learning; NONCONVULSIVE STATUS EPILEPTICUS; TRAUMATIC BRAIN-INJURY; CONTINUOUS VIDEO-EEG; ELECTROGRAPHIC SEIZURES; CONSENSUS STATEMENT; COMATOSE CHILDREN; ADULTS; COMMON; TERMINOLOGY; GUIDELINES;
D O I
10.1016/j.seizure.2021.03.001
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Objective: To determine whether machine learning techniques would enhance our ability to incorporate key variables into a parsimonious model with optimized prediction performance for electroencephalographic seizure (ES) prediction in critically ill children. Methods: We analyzed data from a prospective observational cohort study of 719 consecutive critically ill children with encephalopathy who underwent clinically-indicated continuous EEG monitoring (CEEG). We implemented and compared three state-of-the-art machine learning methods for ES prediction: (1) random forest; (2) Least Absolute Shrinkage and Selection Operator (LASSO); and (3) Deep Learning Important FeaTures (DeepLIFT). We developed a ranking algorithm based on the relative importance of each variable derived from the machine learning methods. Results: Based on our ranking algorithm, the top five variables for ES prediction were: (1) epileptiform discharges in the initial 30 minutes, (2) clinical seizures prior to CEEG initiation, (3) sex, (4) age dichotomized at 1 year, and (5) epileptic encephalopathy. Compared to the stepwise selection-based approach in logistic regression, the top variables selected by our ranking algorithm were more informative as models utilizing the top variables achieved better prediction performance evaluated by prediction accuracy, AUROC and F1 score. Adding additional variables did not improve and sometimes worsened model performance. Conclusion: The ranking algorithm was helpful in deriving a parsimonious model for ES prediction with optimal performance. However, application of state-of-the-art machine learning models did not substantially improve model performance compared to prior logistic regression models. Thus, to further improve the ES prediction, we may need to collect more samples and variables that provide additional information.
引用
收藏
页码:61 / 68
页数:8
相关论文
共 50 条
  • [1] Development of a model to predict electroencephalographic seizures in critically ill children
    Fung, France W.
    Jacobwitz, Marin
    Parikh, Darshana S.
    Vala, Lisa
    Donnelly, Maureen
    Fan, Jiaxin
    Xiao, Rui
    Topjian, Alexis A.
    Abend, Nicholas S.
    EPILEPSIA, 2020, 61 (03) : 498 - 508
  • [2] Validation of a model to predict electroencephalographic seizures in critically ill children
    Fung, France W.
    Parikh, Darshana S.
    Jacobwitz, Marin
    Vala, Lisa
    Donnelly, Maureen
    Wang, Zi
    Xiao, Rui
    Topjian, Alexis A.
    Abend, Nicholas S.
    EPILEPSIA, 2020, 61 (12) : 2754 - 2762
  • [3] EEG monitoring duration to identify electroencephalographic seizures in critically ill children
    Fung, France W.
    Fan, Jiaxin
    Vala, Lisa
    Jacobwitz, Marin
    Parikh, Darshana S.
    Donnelly, Maureen
    Topjian, Alexis A.
    Xiao, Rui
    Abend, Nicholas S.
    NEUROLOGY, 2020, 95 (11) : E1599 - E1608
  • [4] Optimizing EEG monitoring in critically ill children at risk for electroencephalographic seizures
    Coleman, Kyle
    Fung, France W.
    Topjian, Alexis
    Abend, Nicholas S.
    Xiao, Rui
    SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2024, 117 : 244 - 252
  • [5] Periodic and rhythmic patterns in critically ill children: Incidence, interrater agreement, and seizures
    Fung, France W.
    Parikh, Darshana S.
    Massey, Shavonne L.
    Fitzgerald, Mark P.
    Vala, Lisa
    Donnelly, Maureen
    Jacobwitz, Marin
    Kessler, Sudha K.
    Topjian, Alexis A.
    Abend, Nicholas S.
    EPILEPSIA, 2021, 62 (12) : 2955 - 2967
  • [6] EEG Monitoring in Critically Ill Children: Establishing High-Yield Subgroups
    Fung, France W.
    Parikh, Darshana S.
    Donnelly, Maureen
    Jacobwitz, Marin
    Topjian, Alexis A.
    Xiao, Rui
    Abend, Nicholas S.
    JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2024, 41 (04) : 305 - 311
  • [7] Validation of a Model for Targeted EEG Monitoring Duration in Critically Ill Children
    Fung, France W.
    Fan, Jiaxin
    Parikh, Darshana S.
    Vala, Lisa
    Donnelly, Maureen
    Jacobwitz, Marin
    Topjian, Alexis A.
    Xiao, Rui
    Abend, Nicholas S.
    JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2023, 40 (07) : 589 - 599
  • [8] Electrographic Seizures and Outcome in Critically Ill Children
    Fung, France W.
    Wang, Zi
    Parikh, Darshana S.
    Jacobwitz, Marin
    Vala, Lisa
    Donnelly, Maureen
    Topjian, Alexis A.
    Xiao, Rui
    Abend, Nicholas S.
    NEUROLOGY, 2021, 96 (22) : E2749 - E2760
  • [9] Electroencephalographic seizures in critically ill children: Management and adverse events
    Fung, France W.
    Jacobwitz, Marin
    Vala, Lisa
    Parikh, Darshana
    Donnelly, Maureen
    Xiao, Rui
    Topjian, Alexis A.
    Abend, Nicholas S.
    EPILEPSIA, 2019, 60 (10) : 2095 - 2104
  • [10] Could EEG Monitoring in Critically Ill Children Be a Cost-effective Neuroprotective Strategy?
    Abend, Nicholas S.
    Topjian, Alexis A.
    Williams, Sankey
    JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2015, 32 (06) : 486 - 494