Controlling the columnar-to-equiaxed transition during Directed Energy Deposition of Inconel 625

被引:139
作者
Li, S. [1 ,2 ]
Li, J. Y. [1 ,2 ]
Jiang, Z. W. [1 ,2 ]
Cheng, Y. [3 ]
Li, Y. Z. [4 ]
Tang, S. [1 ,2 ]
Leng, J. Z. [5 ]
Chen, H. X. [6 ]
Zou, Y. [6 ]
Zhao, Y. H. [7 ]
Oliveira, J. P. [8 ,9 ]
Zhang, Y. [1 ,2 ]
Wang, K. H. [2 ]
机构
[1] Nanjing Univ Sci & Technol, Herbert Gleiter Inst Nanosci, Nanjing 210094, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Peoples R China
[3] Nanjing Enigma Automat Corp LTD, Nanjing 211153, Peoples R China
[4] Northwestern Polytech Univ, Sch Phys Sci & Technol, Xian 710072, Peoples R China
[5] McGill Univ, Dept Mech Engn, Montreal, PQ H3A 0C3, Canada
[6] Univ Toronto, Dept Mat Sci & Engn, Toronto, ON M5S 3E4, Canada
[7] Nanjing Univ Sci & Technol, Nano & Heterogeneous Mat Ctr, Nanjing 210094, Peoples R China
[8] Univ NOVA Lisboa, NOVA Sch Sci & Technol, Dept Mech & Ind Engn, UNIDEMI, P-2829516 Caparica, Portugal
[9] Univ NOVA Lisboa, NOVA Sch Sci & Technol, Dept Mat Sci, CENIMAT I3N, P-2829516 Caparica, Portugal
基金
中国国家自然科学基金;
关键词
Inconel; 625; Additive Manufacturing; Microstructure; Texture; Mechanical Properties; AUSTENITIC STAINLESS-STEEL; STACKING-FAULT ENERGY; MECHANICAL-BEHAVIOR; PROCESS PARAMETERS; HEAT-TREATMENT; STRENGTHENING MECHANISMS; CORROSION PROPERTIES; MICROSTRUCTURE; GRAIN; NICKEL;
D O I
10.1016/j.addma.2022.102958
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, the grain orientation and mechanical properties of Inconel 625 are tailored by varying the process parameters during directed energy deposition. Under the same deposition speed, increasing the current is effective in promoting the columnar-to-equiaxed transition due to modifications on the thermal cycle. The solidification conditions (temperature gradient and cooling rate) were characterized during the process. A comparison with an existing solidification map for Inconel 625 indicates that the temperature gradients in the melt pool of the sample fabricated with larger current decrease sufficiently to permit the nucleation and growth of equiaxed grains. Uniaxial tensile testing showed that the sample with equiaxed grain microstructure exhibits a higher yield strength (increase by 36 %) when compared to the sample with columnar grains. Contributions of various strengthening mechanisms to the yield strength are quantified in terms of grain boundary strengthening, dislocation strengthening, and solid-solution strengthening. It is found that the higher yield strength of samples that possess equiaxed grains can be attributed to the enhanced dislocation strengthening arising from the large average Taylor factor.
引用
收藏
页数:15
相关论文
共 63 条
[1]   Role of impinging powder particles on melt pool hydrodynamics, thermal behaviour and microstructure in laser-assisted DED process: A particle-scale DEM - CFD - CA approach [J].
Aggarwal, Akash ;
Chouhan, Arvind ;
Patel, Sushil ;
Yadav, D. K. ;
Kumar, Arvind ;
Vinod, A. R. ;
Prashanth, K. G. ;
Gurao, N. P. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 158
[2]  
Ando K., 1971, PHENOMENA MOLTEN POO, V40, P307
[3]   Strain hardening regimes and microstructural evolution during large strain compression of low stacking fault energy fcc alloys that form deformation twins [J].
Asgari, S ;
ElDanaf, E ;
Kalidindi, SR ;
Doherty, RD .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1997, 28 (09) :1781-1795
[4]   Microstructural control during laser powder fusion to create graded microstructure Ni-superalloy components [J].
Attard, B. ;
Cruchley, S. ;
Beetz, Ch ;
Megahed, M. ;
Chiu, Y. L. ;
Attallah, M. M. .
ADDITIVE MANUFACTURING, 2020, 36
[5]   Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing [J].
Bermingham, M. J. ;
StJohn, D. H. ;
Krynen, J. ;
Tedman-Jones, S. ;
Dargusch, M. S. .
ACTA MATERIALIA, 2019, 168 :261-274
[6]   Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L [J].
Bertsch, K. M. ;
de Bellefon, G. Meric ;
Kuehl, B. ;
Thoma, D. J. .
ACTA MATERIALIA, 2020, 199 :19-33
[7]   Effects of process variables and size-scale on solidification microstructure in beam-based fabrication of bulky 3D structures [J].
Bontha, Srikanth ;
Klingbeil, Nathan W. ;
Kobryn, Pamela A. ;
Fraser, Hamish L. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 513-14 :311-318
[8]   3D heat transfer, fluid flow and electromagnetic model for cold metal transfer wire arc additive manufacturing (Cmt-Waam) [J].
Cadiou, S. ;
Courtois, M. ;
Carin, M. ;
Berckmans, W. ;
Le Masson, P. .
ADDITIVE MANUFACTURING, 2020, 36
[9]   Effect of heat treatment on microstructure, mechanical and corrosion properties of austenitic stainless steel 316L using arc additive manufacturing [J].
Chen, Xiaohui ;
Li, Jia ;
Cheng, Xu ;
Wang, Huaming ;
Huang, Zheng .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 715 :307-314
[10]   Microstructure and mechanical behavior of laser aided additive manufactured low carbon interstitial Fe49.5Mn30Co10Cr10C0.5 multicomponent alloy [J].
Chew, Y. ;
Zhu, Z. G. ;
Weng, F. ;
Gao, S. B. ;
Ng, F. L. ;
Lee, B. Y. ;
Bi, G. J. .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 77 :38-46