ON 2-ABSORBING PRIMARY SUBMODULES OF MODULES OVER COMMUTATIVE RINGS

被引:21
作者
Mostafanasab, Hojjat [1 ]
Yetkin, Ece [2 ]
Tekir, Unsal [2 ]
Darani, Ahmad Yousefian [1 ]
机构
[1] Univ Mohaghegh Ardabili, Dept Math & Applicat, POB 179, Ardebil, Iran
[2] Marmara Univ, Dept Math, TR-34722 Istanbul, Turkey
来源
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA | 2016年 / 24卷 / 01期
关键词
Multiplication module; Primary submodule; Prime submodule; 2-absorbing submodule; n-absorbing submodule; IDEALS; RADICALS;
D O I
10.1515/auom-2016-0020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
All rings are commutative with 1 not equal 0, and all modules are unital. The purpose of this paper is to investigate the concept of 2 -absorbing primary submodules generalizing 2 -absorbing primary ideals of rings. Let M be an R -module. A proper submodule N of an R -module M is called a 2 -absorbing primary submodule of M if whenever a, b is an element of R and m is an element of M and abm is an element of N, then am is an element of M-rad(N) or bm is an element of M-rad(N) or ab is an element of (N :(R) M). It is shown that a proper submodule N of M is a 2 -absorbing primary submodule if and only if whenever I-1 I-2 K subset of N for some ideals I-1,I-2 of R and some submodule K of M, then I-1,I-2 subset of (N :(R) M) or I-1 K subset of M-rad(N) or I2K subset of M-rad(N). We prove that for a submodule N of an R -module M if M-rad(N) is a prime submodule of M, then N is a 2 -absorbing primary submodule of M. If N is a 2 -absorbing primary submodule of a finitely generated multiplication R -module M, then (N :(R) M) is a 2 -absorbing primary ideal of R and M-rad(N) is a 2 -absorbing submodule of M.
引用
收藏
页码:335 / 351
页数:17
相关论文
共 50 条
  • [41] Commutative rings with two-absorbing factorization
    Mukhtar, Muzammil
    Ahmed, Malik Tusif
    Dumitrescu, Tiberiu
    [J]. COMMUNICATIONS IN ALGEBRA, 2018, 46 (03) : 970 - 978
  • [42] Classical 1-Absorbing Primary Submodules
    Ucar, Zeynep Yilmaz
    Ersoy, Bayram Ali
    Tekir, Unsal
    celikel, Ece Yetkin
    Onar, Serkan
    [J]. MATHEMATICS, 2024, 12 (12)
  • [43] On Prime Submodules of a Finitely Generated Free Module Over a Commutative Ring
    Mirzaei, F.
    Nekooei, R.
    [J]. COMMUNICATIONS IN ALGEBRA, 2016, 44 (09) : 3966 - 3975
  • [44] On 2-absorbing z-filters
    Bilgin, Zehra
    Demir, Elif
    Oral, Kursat Hakan
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2018, 61 (02): : 147 - 155
  • [45] On weakly 1-absorbing primary submodules
    Celikel, Ece Yetkin
    Koc, Suat
    Tekir, Unsal
    Yildiz, Eda
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (02)
  • [46] CLASSICAL PRIMARY SUBMODULES AND DECOMPOSITION THEORY OF MODULES
    Baziar, M.
    Behboodi, M.
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2009, 8 (03) : 351 - 362
  • [47] The quasi-Zariski topology-graph on the maximal spectrum of modules over commutative rings
    Ansari-Toroghy, H.
    Habibi, Sh
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2018, 26 (03): : 41 - 55
  • [48] ON PRIME SUBMODULES AND PRIMARY DECOMPOSITIONS IN TWO-GENERATED FREE MODULES
    Ceken, Secil
    Alkan, Mustafa
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (01): : 133 - 142
  • [49] AN ALGORITHM TO COMPUTE A PRIMARY DECOMPOSITION OF MODULES IN POLYNOMIAL RINGS OVER THE INTEGERS
    Idrees, Nazeran
    Pfister, Gerhard
    Sadiq, Afshan
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2015, 52 (01) : 40 - 51
  • [50] On expansions of prime and 2-absorbing hyperideals in multiplicative hyperrings
    Ulucak, Gulsen
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (03) : 1504 - 1517