A quantum route to the classical Lagrangian formalism

被引:8
作者
Ciaglia, F. M. [1 ]
Di Cosmo, F. [2 ,3 ]
Ibort, A. [2 ,3 ]
Marmo, G. [4 ]
Schiavone, L. [3 ,5 ]
Zampini, A. [6 ]
机构
[1] Max Planck Inst Math Nat Wissensch, Inselstr 22, D-04103 Leipzig, Germany
[2] ICMAT Inst Ciencias Matemat CSIC UAM UC3M UCM, Campus Cantoblanco UAM,C Nicolas Cabrera 13-15, Madrid 28049, Spain
[3] Univ Carlos III Madrid, Dept Matemat, Avda Univ 30, Madrid 28911, Spain
[4] Univ Napoli Federico II, Ist Nazl Fis Nucl, Sez Napoli, Dipartimento Fis E Pancini, Complesso Univ Monte S Angelo,Via Cintia, I-80126 Naples, Italy
[5] Univ Napoli Federico II, Dipartimento Matemat Applicaz R Caccioppoli, Complesso Univ Monte S Angelo,Via Cintia, I-80126 Naples, Italy
[6] Univ Napoli Federico II, Dipartimento Matemat Applicaz R Caccioppoli, Ist Nazl Fis Nucl, Sez Napoli, Complesso Univ Monte S Angelo,Via Cintia, I-80126 Naples, Italy
关键词
Lagrangian in quantum mechanics; Lie groupoids and Lie algebroids; classical limit of quantum mechanics; LIE ALGEBROIDS; MECHANICS;
D O I
10.1142/S0217732321500917
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using the recently developed groupoidal description of Schwinger's picture of Quantum Mechanics, a new approach to Dirac's fundamental question on the role of the Lagrangian in Quantum Mechanics is provided. It is shown that a function l on the groupoid of configurations (or kinematical groupoid) of a quantum system determines a state on the von Neumann algebra of the histories of the system. This function, which we call q-Lagrangian, can be described in terms of a new function L on the Lie algebroid of the theory. When the kinematical groupoid is the pair groupoid of a smooth manifold M, the quadratic expansion of L will reproduce the standard Lagrangians on TM used to describe the classical dynamics of particles.
引用
收藏
页数:14
相关论文
共 20 条
  • [1] THE FEYNMAN PROBLEM AND THE INVERSE PROBLEM FOR POISSON DYNAMICS
    CARINENA, JF
    IBORT, LA
    MARMO, G
    STERN, A
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1995, 263 (03): : 153 - 212
  • [2] A gentle introduction to Schwinger's formulation of quantum mechanics: The groupoid picture
    Ciaglia, F. M.
    Ibort, A.
    Marmo, G.
    [J]. MODERN PHYSICS LETTERS A, 2018, 33 (20)
  • [3] Schwinger's picture of quantum mechanics II: Algebras and observables
    Ciaglia, F. M.
    Ibort, A.
    Marmo, G.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (09)
  • [4] Schwinger's picture of quantum mechanics I: Groupoids
    Ciaglia, F. M.
    Ibort, A.
    Marmo, G.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (08)
  • [5] Connes A., 1994, NONCOMMUTATIVE GEOME
  • [6] CONNES A, 1978, LECT NOTES MATH, V725
  • [7] A survey of Lagrangian Mechanics and control on Lie algebroids and groupoids
    Cortes, Jorge
    De Leon, Manuel
    Marrero, Juan C.
    Martin De Diego, D.
    Martinez, Eduardo
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (03) : 509 - 558
  • [8] Integrability of Lie brackets
    Crainic, M
    Fernandes, RL
    [J]. ANNALS OF MATHEMATICS, 2003, 157 (02) : 575 - 620
  • [9] Dirac P A M, 1933, Physikalische Z. Sowjetunion, V3, P1
  • [10] THE HAMILTONIAN FORM OF FIELD DYNAMICS
    DIRAC, PAM
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1951, 3 (01): : 1 - 23