Physiological machine learning models for prediction of sepsis in hospitalized adults: An integrative review

被引:14
作者
Kausch, Sherry L. [1 ,3 ,4 ]
Moorman, J. Randall [2 ,3 ]
Lake, Douglas E. [2 ,3 ]
Keim-Malpass, Jessica [1 ,3 ]
机构
[1] Univ Virginia, Sch Nursing, Charlottesville, VA 22903 USA
[2] Univ Virginia, Sch Med, Dept Internal Med, Div Cardiovasc Dis, Charlottesville, VA 22908 USA
[3] Univ Virginia, Ctr Adv Med Analyt, Charlottesville, VA USA
[4] Univ Virginia, Sch Data Sci, Charlottesville, VA USA
关键词
Machine learning; Predictive analytics; Risk prediction; Sepsis; SEPTIC SHOCK; DEFINITIONS; GUIDELINES; ONSET;
D O I
10.1016/j.iccn.2021.103035
中图分类号
R47 [护理学];
学科分类号
1011 ;
摘要
Background: Diagnosing sepsis remains challenging. Data compiled from continuous monitoring and electronic health records allow for new opportunities to compute predictions based on machine learning techniques. There has been a lack of consensus identifying best practices for model development and validation towards early identification of sepsis. Objective: To evaluate the modeling approach and statistical methodology of machine learning prediction models for sepsis in the adult hospital population. Methods: PubMed, CINAHL, and Cochrane databases were searched with the Preferred Reporting Items for Systematic Reviews guided protocol development. We evaluated studies that developed or validated physiologic sepsis prediction models or implemented a model in the hospital environment. Results: Fourteen studies met the inclusion criteria, and the AUROC of the prediction models ranged from 0.61 to 0.96. We found a variety of sepsis definitions, methods used for event adjudication, model parameters used, and modeling methods. Two studies tested models in clinical settings; the results suggested that patient outcomes were improved with implementation of machine learning models. Conclusion: Nurses have a unique perspective to offer in the development and implementation of machine learning models detecting patients at risk for sepsis. More work is needed in developing model harmonization standards and testing in clinical settings. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 27 条
[1]   DEFINITIONS FOR SEPSIS AND ORGAN FAILURE AND GUIDELINES FOR THE USE OF INNOVATIVE THERAPIES IN SEPSIS [J].
BONE, RC ;
BALK, RA ;
CERRA, FB ;
DELLINGER, RP ;
FEIN, AM ;
KNAUS, WA ;
SCHEIN, RMH ;
SIBBALD, WJ .
CHEST, 1992, 101 (06) :1644-1655
[2]   High-performance detection and early prediction of septic shock for alcohol-use disorder patients [J].
Calvert, Jacob ;
Desautels, Thomas ;
Chettipally, Uli ;
Barton, Christopher ;
Hoffman, Jana ;
Jay, Melissa ;
Mao, Qingqing ;
Mohamadlou, Hamid ;
Das, Ritankar .
ANNALS OF MEDICINE AND SURGERY, 2016, 8 :50-55
[3]   A computational approach to early sepsis detection [J].
Calvert, Jacob S. ;
Price, Daniel A. ;
Chettipally, Uli K. ;
Barton, Christopher W. ;
Feldman, Mitchell D. ;
Hoffman, Jana L. ;
Jay, Melissa ;
Das, Ritankar .
COMPUTERS IN BIOLOGY AND MEDICINE, 2016, 74 :69-73
[4]   Prediction of Sepsis in the Intensive Care Unit With Minimal Electronic Health Record Data: A Machine Learning Approach [J].
Desautels, Thomas ;
Calvert, Jacob ;
Hoffman, Jana ;
Jay, Melissa ;
Kerem, Yaniv ;
Shieh, Lisa ;
Shimabukuro, David ;
Chettipally, Uli ;
Feldman, Mitchell D. ;
Barton, Chris ;
Wales, David J. ;
Das, Ritankar .
JMIR MEDICAL INFORMATICS, 2016, 4 (03) :67-81
[5]   Using survival analysis to predict septic shock onset in ICU patients [J].
Dummitt, Benjamin ;
Zeringue, Angelique ;
Palagiri, Ashok ;
Veremakis, Christopher ;
Burch, Benjamin ;
Yount, Byron .
JOURNAL OF CRITICAL CARE, 2018, 48 :339-344
[6]  
Finfer S.R., 2013, NEW ENGL J MED, V369, P840, DOI [10.1056/NEJMra1208623, DOI 10.1056/NEJMRA1208623]
[7]   A targeted real-time early warning score (TREWScore) for septic shock [J].
Henry, Katharine E. ;
Hager, David N. ;
Pronovost, Peter J. ;
Saria, Suchi .
SCIENCE TRANSLATIONAL MEDICINE, 2015, 7 (299)
[8]   MIMIC-III, a freely accessible critical care database [J].
Johnson, Alistair E. W. ;
Pollard, Tom J. ;
Shen, Lu ;
Lehman, Li-wei H. ;
Feng, Mengling ;
Ghassemi, Mohammad ;
Moody, Benjamin ;
Szolovits, Peter ;
Celi, Leo Anthony ;
Mark, Roger G. .
SCIENTIFIC DATA, 2016, 3
[9]   Advancing Continuous Predictive Analytics Monitoring Moving from Implementation to Clinical Action in a Learning Health System [J].
Keim-Malpass, Jessica ;
Kitzmiller, Rebecca R. ;
Skeeles-Worley, Angela ;
Lindberg, Curt ;
Clark, Matthew T. ;
Tai, Robert ;
Calland, James Forrest ;
Sullivan, Kevin ;
Moorman, J. Randall ;
Anderson, Ruth A. .
CRITICAL CARE NURSING CLINICS OF NORTH AMERICA, 2018, 30 (02) :273-+
[10]   2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference [J].
Levy, MM ;
Fink, MP ;
Marshall, JC ;
Abraham, E ;
Angus, D ;
Cook, D ;
Cohen, J ;
Opal, SM ;
Vincent, JL ;
Ramsay, G .
CRITICAL CARE MEDICINE, 2003, 31 (04) :1250-1256