Carbon Nanomaterials in Biosensors: Should You Use Nanotubes or Graphene?

被引:1166
作者
Yang, Wenrong [1 ]
Ratinac, Kyle R. [1 ]
Ringer, Simon P. [1 ]
Thordarson, Pall [2 ]
Gooding, J. Justin [2 ]
Braet, Filip [1 ]
机构
[1] Univ Sydney, Australian Key Ctr Microscopy & Microanal, Madsen Bldg F09, Sydney, NSW 2006, Australia
[2] Univ New S Wales, Sch Chem, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会; 澳大利亚国家健康与医学研究理事会;
关键词
biosensors; carbon nanomaterials; carbon nanotubes; graphene; sensors; FIELD-EFFECT TRANSISTORS; BAND-GAP FLUORESCENCE; CATALYST-FREE GROWTH; IN-SITU DETECTION; EDGE-PLANE SITES; ELECTRONIC-PROPERTIES; METAL NANOPARTICLES; GLUCOSE-OXIDASE; ELECTRICAL DETECTION; ELECTROGENERATED CHEMILUMINESCENCE;
D O I
10.1002/anie.200903463
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
From diagnosis of life-threatening diseases to detection of biological agents in warfare or terrorist attacks, biosensors are becoming a critical part of modern life. Many recent biosensors have incorporated carbon nanotubes as sensing elements, while a growing body of work has begun to do the same with the emergent nanomaterial graphene, which is effectively an unrolled nanotube. With this widespread use of carbon nanomaterials in biosensors, it is timely to assess how this trend is contributing to the science and applications of biosensors. This Review explores these issues by presenting the latest advances in electrochemical, electrical, and optical biosensors that use carbon nanotubes and graphene, and critically compares the performance of the two carbon allotropes in this application. Ultimately, carbon nanomaterials, although still to meet key challenges in fabrication and handling, have a bright future as biosensors. © 2010 Wiley-VCH Verlag GmbH & Co. KCaA.
引用
收藏
页码:2114 / 2138
页数:25
相关论文
共 259 条
[31]   A stochastic single-molecule event triggers phenotype switching of a bacterial cell [J].
Choi, Paul J. ;
Cai, Long ;
Frieda, Kirsten ;
Xie, Sunney .
SCIENCE, 2008, 322 (5900) :442-446
[32]   Demonstration of the importance of oxygenated species at the ends of carbon nanotubes for their favourable electrochemical properties [J].
Chou, A ;
Böcking, T ;
Singh, NK ;
Gooding, JJ .
CHEMICAL COMMUNICATIONS, 2005, (07) :842-844
[33]   Self-Assembled Carbon Nanotube Electrode Arrays: Effect of Length of the Linker between Nanotubes and Electrode [J].
Chou, Alison ;
Eggers, Paul K. ;
Paddon-Row, Michael N. ;
Gooding, J. Justin .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (08) :3203-3211
[34]  
Choucair M, 2009, NAT NANOTECHNOL, V4, P30, DOI [10.1038/nnano.2008.365, 10.1038/NNANO.2008.365]
[35]   Ion-sensitive field effect transistors using carbon nanotubes as the transducing layer [J].
Cid, Cristina C. ;
Riu, Jordi ;
Maroto, Alicia ;
Xavier Rius, F. .
ANALYST, 2008, 133 (08) :1001-1004
[36]   Electrochemical Biosensor of Nanocube-Augmented Carbon Nanotube Networks [J].
Claussen, Jonathan C. ;
Franklin, Aaron D. ;
ul Haque, Aeraj ;
Porterfield, D. Marshall ;
Fisher, Timothy S. .
ACS NANO, 2009, 3 (01) :37-44
[37]   Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions [J].
Cognet, Laurent ;
Tsyboulski, Dmitri A. ;
Rocha, John-David R. ;
Doyle, Condell D. ;
Tour, James M. ;
Weisman, R. Bruce .
SCIENCE, 2007, 316 (5830) :1465-1468
[38]   Engineering carbon nanotubes and nanotube circuits using electrical breakdown [J].
Collins, PC ;
Arnold, MS ;
Avouris, P .
SCIENCE, 2001, 292 (5517) :706-709
[39]   Nanotube nanodevice [J].
Collins, PG ;
Zettl, A ;
Bando, H ;
Thess, A ;
Smalley, RE .
SCIENCE, 1997, 278 (5335) :100-103
[40]   Extreme oxygen sensitivity of electronic properties of carbon nanotubes [J].
Collins, PG ;
Bradley, K ;
Ishigami, M ;
Zettl, A .
SCIENCE, 2000, 287 (5459) :1801-1804