Resource augmentation for online bounded space bin packing

被引:0
|
作者
Csirik, J [1 ]
Woeginger, GJ
机构
[1] Univ Szeged, Dept Comp Sci, H-6720 Szeged, Hungary
[2] Graz Tech Univ, Inst Math, A-8010 Graz, Austria
来源
关键词
online algorithm; competitive analysis; resource augmentation; approximation algorithm; asymptotic worst case ratio; bin packing;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study online bounded space bin packing in the resource augmentation model of competitive analysis. In this model, the online bounded space packing algorithm has to pack a list L of items in (0, 1] into a small number of bins of size b greater than or equal to 1. Its performance is measured by comparing the produced packing against the optimal offline packing of the list L into bins of size 1. We present a complete solution to this problem: For every bin size b greater than or equal to 1, we design online bounded space bin packing algorithms whose worst case ratio in this model comes arbitrarily close to a certain bound rho(b). Moreover, we prove that no online bounded space algorithm can perform better than rho(b) in the worst case.
引用
收藏
页码:296 / 304
页数:9
相关论文
共 50 条
  • [1] Resource augmentation for online bounded space bin packing
    Csirik, J
    Woeginger, GJ
    JOURNAL OF ALGORITHMS, 2002, 44 (02) : 308 - 320
  • [2] Online bin packing with resource augmentation
    Epstein, L
    van Stee, R
    APPROXIMATION AND ONLINE ALGORITHMS, 2004, 3351 : 23 - 35
  • [3] Online bin packing with resource augmentation
    Epstein, Leah
    van Stee, Rob
    DISCRETE OPTIMIZATION, 2007, 4 (3-4) : 322 - 333
  • [4] Resource augmented semi-online bounded space bin packing
    Epstein, Leah
    Kleiman, Elena
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (13) : 2785 - 2798
  • [5] IMPROVED SPACE FOR BOUNDED-SPACE, ONLINE BIN-PACKING
    WOEGINGER, G
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1993, 6 (04) : 575 - 581
  • [6] REPACKING HELPS IN BOUNDED SPACE ONLINE BIN-PACKING
    GALAMBOS, G
    WOEGINGER, GJ
    COMPUTING, 1993, 49 (04) : 329 - 338
  • [7] Online algorithms for 1-space bounded multi dimensional bin packing and hypercube packing
    Yong Zhang
    Francis Y. L. Chin
    Hing-Fung Ting
    Xin Han
    Journal of Combinatorial Optimization, 2013, 26 : 223 - 236
  • [8] Online algorithms for 1-space bounded multi dimensional bin packing and hypercube packing
    Zhang, Yong
    Chin, Francis Y. L.
    Ting, Hing-Fung
    Han, Xin
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 26 (02) : 223 - 236
  • [9] A tight lower bound for the online bounded space hypercube bin packing problem
    Kohayakawa, Yoshiharu
    Miyazawa, Flavio Keidi
    Wakabayashi, Yoshiko
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2021, 23 (03):
  • [10] An optimal online algorithm for bounded space variable-sized bin packing
    Seiden, SS
    AUTOMATA LANGUAGES AND PROGRAMMING, 2000, 1853 : 283 - 295