End-to-end privacy preserving deep learning on multi-institutional medical imaging

被引:244
作者
Kaissis, Georgios [1 ,2 ,3 ,4 ]
Ziller, Alexander [1 ,2 ,4 ]
Passerat-Palmbach, Jonathan [3 ,4 ,5 ]
Ryffel, Theo [4 ,6 ,7 ]
Usynin, Dmitrii [1 ,2 ,3 ,4 ]
Trask, Andrew [4 ,8 ]
Lima, Ionesio, Jr. [4 ,9 ]
Mancuso, Jason [4 ,10 ]
Jungmann, Friederike [1 ]
Steinborn, Marc-Matthias [11 ]
Saleh, Andreas [11 ]
Makowski, Marcus [1 ]
Rueckert, Daniel [2 ,3 ]
Braren, Rickmer [1 ,12 ]
机构
[1] Tech Univ Munich, Inst Diagnost & Intervent Radiol, Munich, Germany
[2] Tech Univ Munich, Artificial Intelligence Med & Healthcare, Munich, Germany
[3] Imperial Coll London, Dept Comp, London, England
[4] OpenMined, New York, NY USA
[5] ConsenSys Hlth, New York, NY USA
[6] PSL Univ, ENS, INRIA, Paris, France
[7] Arkhn, Paris, France
[8] Univ Oxford, Ctr Governance AI, Oxford, England
[9] Univ Fed Campina Grande, Campina Grande, Paraiba, Brazil
[10] Cape Privacy, New York, NY USA
[11] Munchen Klin Schwabing, Munich, Germany
[12] German Canc Consortium DKTK, Partner Site Munich, Munich, Germany
基金
英国科研创新办公室;
关键词
DISEASES; SECURE;
D O I
10.1038/s42256-021-00337-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Using large, multi-national datasets for high-performance medical imaging AI systems requires innovation in privacy-preserving machine learning so models can train on sensitive data without requiring data transfer. Here we present PriMIA (Privacy-preserving Medical Image Analysis), a free, open-source software framework for differentially private, securely aggregated federated learning and encrypted inference on medical imaging data. We test PriMIA using a real-life case study in which an expert-level deep convolutional neural network classifies paediatric chest X-rays; the resulting model's classification performance is on par with locally, non-securely trained models. We theoretically and empirically evaluate our framework's performance and privacy guarantees, and demonstrate that the protections provided prevent the reconstruction of usable data by a gradient-based model inversion attack. Finally, we successfully employ the trained model in an end-to-end encrypted remote inference scenario using secure multi-party computation to prevent the disclosure of the data and the model. Gaining access to medical data to train AI applications can present problems due to patient privacy or proprietary interests. A way forward can be privacy-preserving federated learning schemes. Kaissis, Ziller and colleagues demonstrate here their open source framework for privacy-preserving medical image analysis in a remote inference scenario.
引用
收藏
页码:473 / 484
页数:12
相关论文
共 65 条
[1]   Deep Learning with Differential Privacy [J].
Abadi, Martin ;
Chu, Andy ;
Goodfellow, Ian ;
McMahan, H. Brendan ;
Mironov, Ilya ;
Talwar, Kunal ;
Zhang, Li .
CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2016, :308-318
[2]   Towards the AlexNet Moment for Homomorphic Encryption: HCNN, the First Homomorphic CNN on Encrypted Data With GPUs [J].
Al Badawi, Ahmad ;
Jin, Chao ;
Lin, Jie ;
Mun, Chan Fook ;
Jie, Sim Jun ;
Tan, Benjamin Hong Meng ;
Nan, Xiao ;
Aung, Khin Mi Mi ;
Chandrasekhar, Vijay Ramaseshan .
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2021, 9 (03) :1330-1343
[3]   End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography [J].
Ardila, Diego ;
Kiraly, Atilla P. ;
Bharadwaj, Sujeeth ;
Choi, Bokyung ;
Reicher, Joshua J. ;
Peng, Lily ;
Tse, Daniel ;
Etemadi, Mozziyar ;
Ye, Wenxing ;
Corrado, Greg ;
Naidich, David P. ;
Shetty, Shravya .
NATURE MEDICINE, 2019, 25 (06) :954-+
[4]  
Bach T, 2020, ARIANN LOW INTERACTI
[5]   Wearable devices and healthcare: Data sharing and privacy [J].
Banerjee, Syagnik ;
Hemphill, Thomas ;
Longstreet, Phil .
INFORMATION SOCIETY, 2018, 34 (01) :49-57
[6]  
Bergstra J., 2011, P 25 INT C NEUR INF, P24, DOI DOI 10.5555/2986459.2986743
[7]   Assessing Radiology Research on Artificial Intelligence: A Brief Guide for Authors, Reviewers, and Readers-From the Radiology Editorial Board [J].
Bluemke, David A. ;
Moy, Linda ;
Bredella, Miriam A. ;
Ertl-Wagner, Birgit B. ;
Fowler, Kathryn J. ;
Goh, Vicky J. ;
Halpern, Elkan F. ;
Hess, Christopher P. ;
Schiebler, Mark L. ;
Weiss, Clifford R. .
RADIOLOGY, 2020, 294 (03) :487-489
[8]  
Bonawitz K., 2016, NIPS WORKSHOP PRIVAT
[9]   Secure Computation with Preprocessing via Function Secret Sharing [J].
Boyle, Elette ;
Gilboa, Niv ;
Ishai, Yuval .
THEORY OF CRYPTOGRAPHY, TCC 2019, PT I, 2019, 11891 :341-371
[10]   Function Secret Sharing: Improvements and Extensions [J].
Boyle, Elette ;
Gilboa, Niv ;
Ishai, Yuval .
CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2016, :1292-1303