ON INCOMPRESSIBLE LIMITS FOR THE NAVIER-STOKES SYSTEM ON UNBOUNDED DOMAINS UNDER SLIP BOUNDARY CONDITIONS

被引:17
作者
Donatelli, Donatella [1 ]
Feireisl, Eduard [2 ]
Novotny, Antonin [3 ]
机构
[1] Univ Aquila, Dept Matemat Pura & Applicata, I-67100 Laquila, Italy
[2] Acad Sci Czech Republic, Inst Math, CR-11567 Prague 1, Czech Republic
[3] Univ Sud Toulon Var, IMATH, F-83957 La Garde, France
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2010年 / 13卷 / 04期
关键词
Navier-Stokes equations; singular limits; low Mach number; compressible fluids; unbounded domains; COMPRESSIBLE EULER EQUATION; MACH NUMBER LIMIT; FLOWS; EXTERIOR; WAVE;
D O I
10.3934/dcdsb.2010.13.783
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the low Mach number limit for the compressible Navier-Stokes system supplemented with Navier's boundary condition on an unbounded domain with compact boundary. Our main result asserts that the velocities converge pointwise to a solenoidal vector field - a weak solution of the incompressible Navier-Stokes system - while the fluid density becomes constant. The proof is based on a variant of local energy decay property for the underlying acoustic equation established by Kato.
引用
收藏
页码:783 / 798
页数:16
相关论文
共 31 条
[21]  
Lions P.-L., 1998, MATH TOPICS FLUID DY
[22]   A local approach to the incompressible limit [J].
Lions, PL ;
Masmoudi, N .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (05) :387-392
[23]  
Masmoudi N, 2007, HBK DIFF EQUAT EVOL, V3, P195, DOI 10.1016/S1874-5717(07)80006-5
[24]   Global Strichartz estimates for solutions to the wave equation exterior to a convex obstacle [J].
Metcalfe, JL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (12) :4839-4855
[25]   Averaging theorems for conservative systems and the weakly compressible Euler equations [J].
Métivier, G ;
Schochet, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 187 (01) :106-183
[26]  
Métivier G, 2001, ARCH RATION MECH AN, V158, P61, DOI 10.1007/s002050100140
[27]  
Novotny A., 2004, Introduction to the mathematical theory of compressible flow, of oxford lecture
[28]   Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: molecular-scale simulations versus continuum predictions [J].
Priezjev, Nikolai V. ;
Troian, Sandra M. .
JOURNAL OF FLUID MECHANICS, 2006, 554 :25-46
[29]  
REED M., 1978, Methods of Modern Mathematical Physics, IV: Analysis of operators
[30]   The mathematical theory of low Mach number flows [J].
Schochet, S .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (03) :441-458