ON INCOMPRESSIBLE LIMITS FOR THE NAVIER-STOKES SYSTEM ON UNBOUNDED DOMAINS UNDER SLIP BOUNDARY CONDITIONS

被引:17
作者
Donatelli, Donatella [1 ]
Feireisl, Eduard [2 ]
Novotny, Antonin [3 ]
机构
[1] Univ Aquila, Dept Matemat Pura & Applicata, I-67100 Laquila, Italy
[2] Acad Sci Czech Republic, Inst Math, CR-11567 Prague 1, Czech Republic
[3] Univ Sud Toulon Var, IMATH, F-83957 La Garde, France
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2010年 / 13卷 / 04期
关键词
Navier-Stokes equations; singular limits; low Mach number; compressible fluids; unbounded domains; COMPRESSIBLE EULER EQUATION; MACH NUMBER LIMIT; FLOWS; EXTERIOR; WAVE;
D O I
10.3934/dcdsb.2010.13.783
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the low Mach number limit for the compressible Navier-Stokes system supplemented with Navier's boundary condition on an unbounded domain with compact boundary. Our main result asserts that the velocities converge pointwise to a solenoidal vector field - a weak solution of the incompressible Navier-Stokes system - while the fluid density becomes constant. The proof is based on a variant of local energy decay property for the underlying acoustic equation established by Kato.
引用
收藏
页码:783 / 798
页数:16
相关论文
共 31 条
[1]  
ALAZARD T, 2008, DISCRETE CONTINI D S, V1, P365
[2]  
Alazard T, 2005, ADV DIFFERENTIAL EQU, V10, P19
[3]  
[Anonymous], 1994, An introduction to the mathematical theory of the Navier-Stokes equations
[4]  
Burq N, 2004, INDIANA U MATH J, V53, P1665
[5]   Low Mach number limit for viscous compressible flows [J].
Danchin, R .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (03) :459-475
[6]   Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions [J].
Desjardins, B ;
Grenier, E ;
Lions, PL ;
Masmoudi, N .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1999, 78 (05) :461-471
[7]   Low Mach number limit of viscous compressible flows in the whole space [J].
Desjardins, B ;
Grenier, E .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1986) :2271-2279
[8]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[9]  
DUNFORD N, 1964, LINEAR OPERATORS 2
[10]   On the Existence of Globally Defined Weak Solutions to the Navier-Stokes Equations [J].
Feireisl, Eduard ;
Novotny, Antonin ;
Petzeltova, Hana .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2001, 3 (04) :358-392