Seiberg-Witten vanishing theorem for S1-manifolds with fixed points

被引:15
作者
Baldridge, S [1 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
关键词
D O I
10.2140/pjm.2004.217.1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the Seiberg-Witten invariant is zero for all smooth 4-manifolds with b(+)> 1 that admit circle actions having at least one fixed point. We also show that all symplectic 4-manifolds that admit (possibly nonsymplectic) circle actions with fixed points are rational or ruled, and thus admit a symplectic circle action.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 22 条
[1]  
Ahara K., 1991, J. Fac. Sci. Univ. Tokyo Sect. IA, V38, P251
[2]  
AUDIN M, 1990, LECT NOTES MATH, V1416, P1
[3]  
Audin M., 1991, Progr. Math., V93
[4]   Seiberg-Witten invariants of 4-manifolds with free circle actions [J].
Baldridge, S .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (03) :341-353
[5]   Seiberg-Witten invariants, orbifolds, and circle actions [J].
Baldridge, SJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (04) :1669-1697
[6]   Symplectic Lefschetz fibrations on S1 x M3 [J].
Chen, Weimin ;
Matveyev, Rostislav .
GEOMETRY & TOPOLOGY, 2000, 4 :517-535
[7]   Seiberg-Witten equations and 4-manifold topology [J].
Donaldson, SK .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 33 (01) :45-70
[8]  
ETGU T, 2001, ALGEBR GEOM TOPOL, V1, P469, DOI DOI 10.2140/AGT.2001.1.469
[9]  
FINTUSHEL R, 1977, T AM MATH SOC, V230, P147
[10]   CLASSIFICATION OF CIRCLE ACTIONS ON 4-MANIFOLDS [J].
FINTUSHEL, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 242 (AUG) :377-390